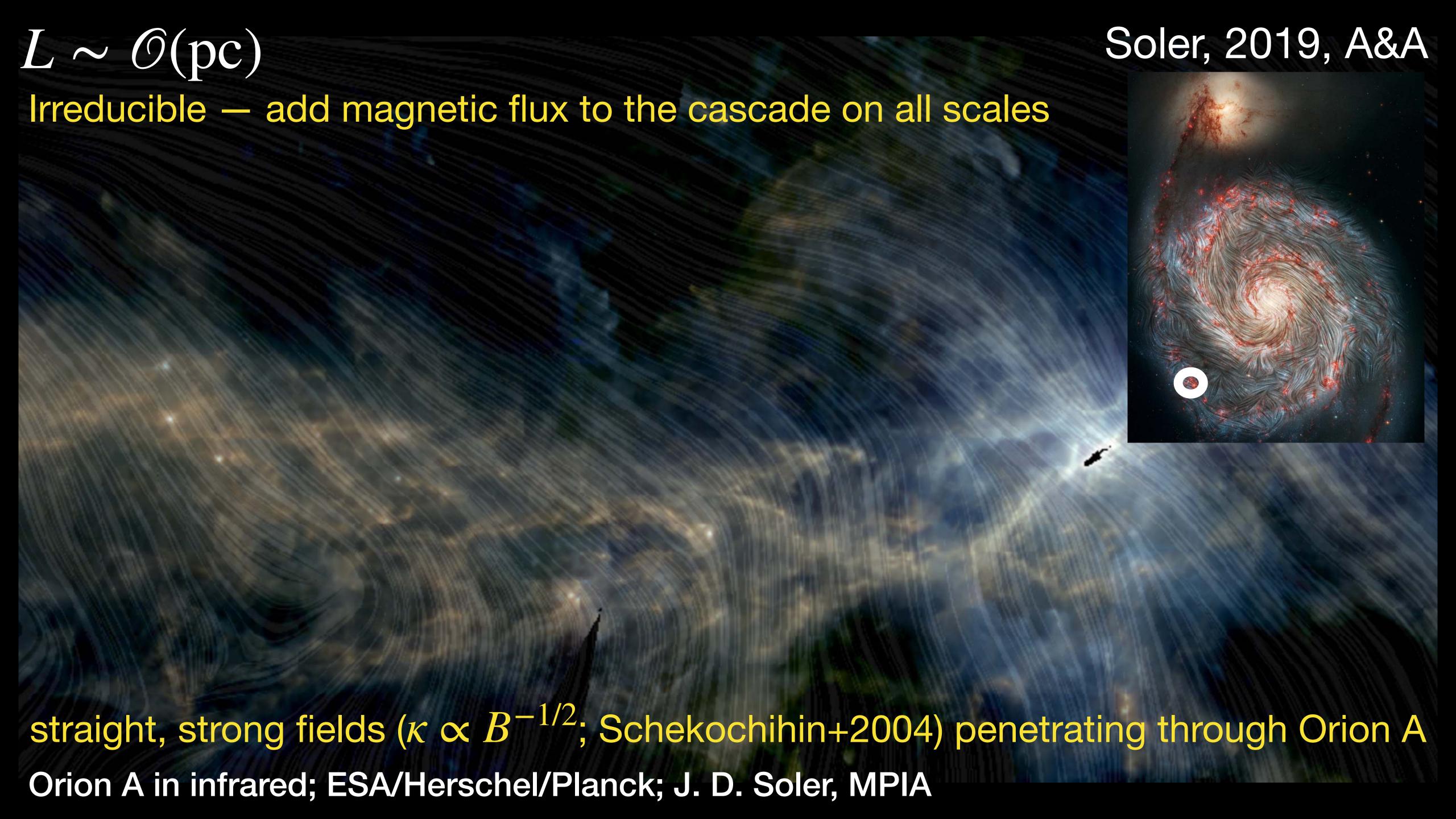


large scale, ordered magnetic fields



The cold ISM: A supersonic laboratory for interesting nonlinear physics

- ~ 20% MW ISM gas is molecular hydrogen, organised into MCs (low-volume filling ~ 1-2%).
- \bullet cold, $T\sim 10\,K$, c_s is low, approximately isothermal
- $\sigma_v/c_s=M\sim 10$, supersonic (compressible), Re $\sim 10^9$
- $L \sim 10 \,\mathrm{pc} \implies T = L/\sigma_v \sim \mathcal{O}(\mathrm{Myr})$
- $n \sim 10^3 10^{7+}$, huge density contrasts.
- weakly bounded (not virialised) by their own self-gravity $\alpha_{\rm vir} = 2 \, |E_{\rm kin}| \, / \, |E_{\rm grav}| > 2.$
- threaded by dynamically important B fields, Ohmic Rm $\sim 10^{16}$.

Simplest possible supersonic dynamo simulations

- Modified version of finite volume code *FLASH*, second-order in space approximate Riemann (PPM) solver with framework outlined in Bouchut+(2010), tested in *FLASH* in Waagen+(2011).
- Compressible non-helical, visco/resistive MHD turbulence driven with finite correlation time t_0 (OU process; Federrath2022) on L/2 in triply periodic box.
- No net magnetic flux $\langle b \rangle = 0$. Pure turbulent magnetic field.

$$\partial_{t}\rho + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$d_{t}(\rho \mathbf{u}) + \nabla \cdot \mathbb{F} = \frac{1}{\text{Re}} \nabla \cdot \sigma_{\text{viscous}} + \rho \mathbf{f}$$

$$\partial_{t} \mathbf{b} = \nabla \times (\mathbf{u} \times \mathbf{b}) + \frac{1}{\text{Rm}} \nabla^{2} \mathbf{b}$$

$$\nabla \cdot \mathbf{b} = 0 \quad p = c_{s}\rho$$

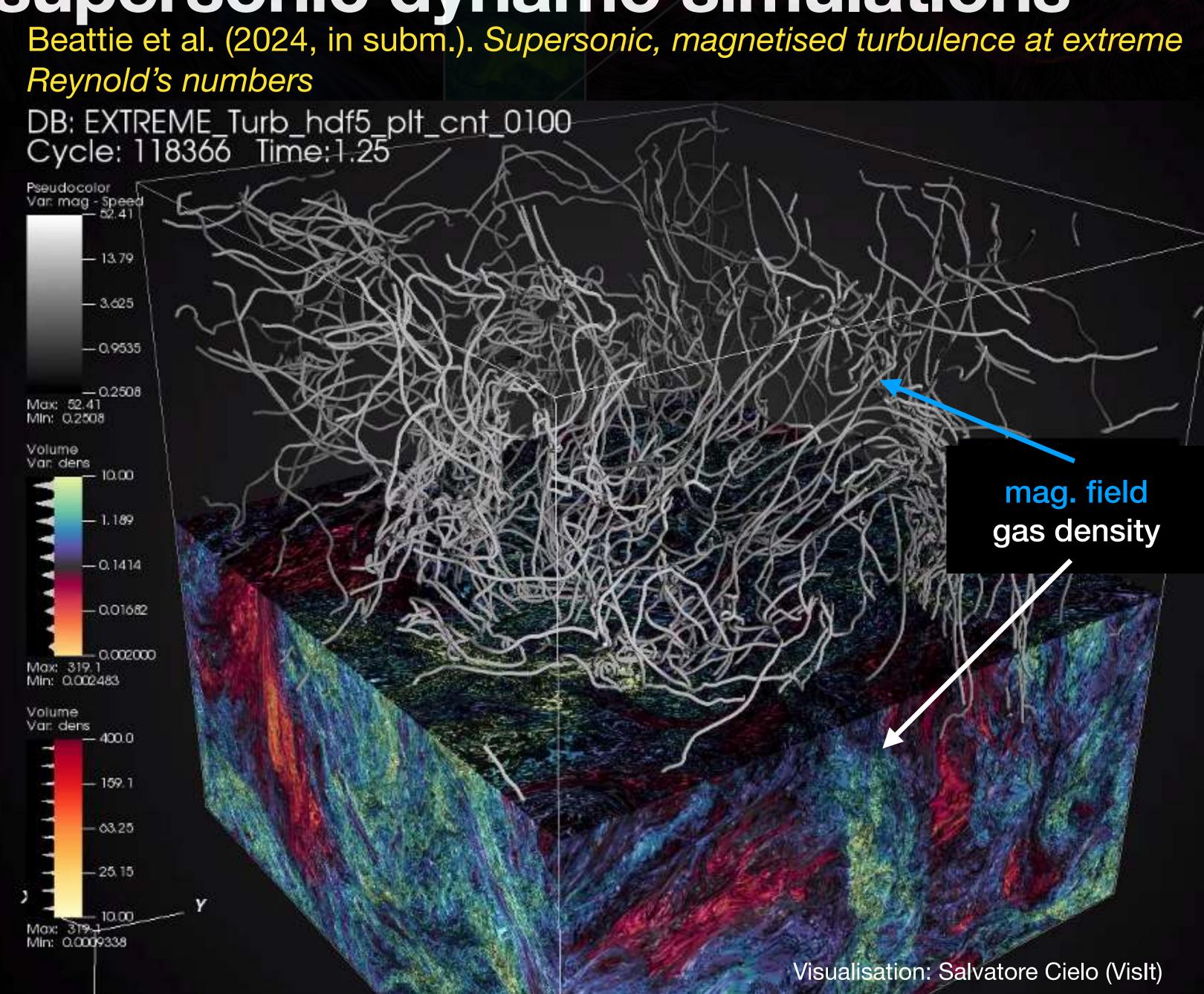
~200 DNS simulations
Grids up to $10,080^3$ $1 \le Pm \le 300$ $10 \le Re \le 10^6$ $500 \le Rm \le 10^6$ $0.1 \le \mathcal{M} \le 10$

Simplest possible supersonic dynamo simulations

-Broad parameter study-~200 DNS simulations Grids up to $1,152^3$ $1 \le Pm \le 300$ $10 \le Re \le 10^4$ $500 \le Rm \le 10^4$ $0.1 \le \mathcal{M} \le 10$

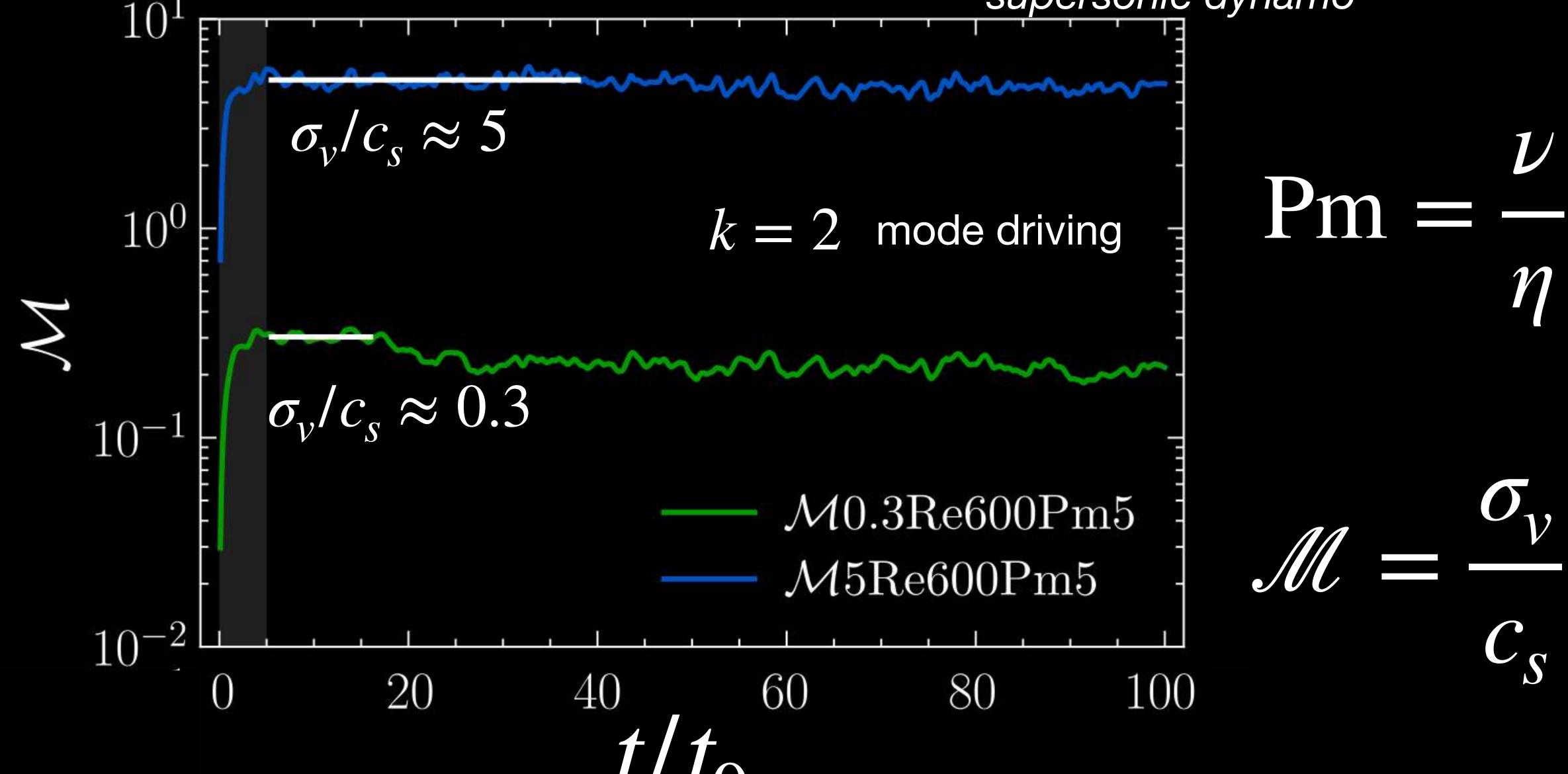
One hero simulation-

 $\mathcal{M} \sim 4$ $10,080^3$ $Re \sim 10^6$ $Rm \sim 10^6$ 150,000 compute cores 10^8 compute hours 2PB data products



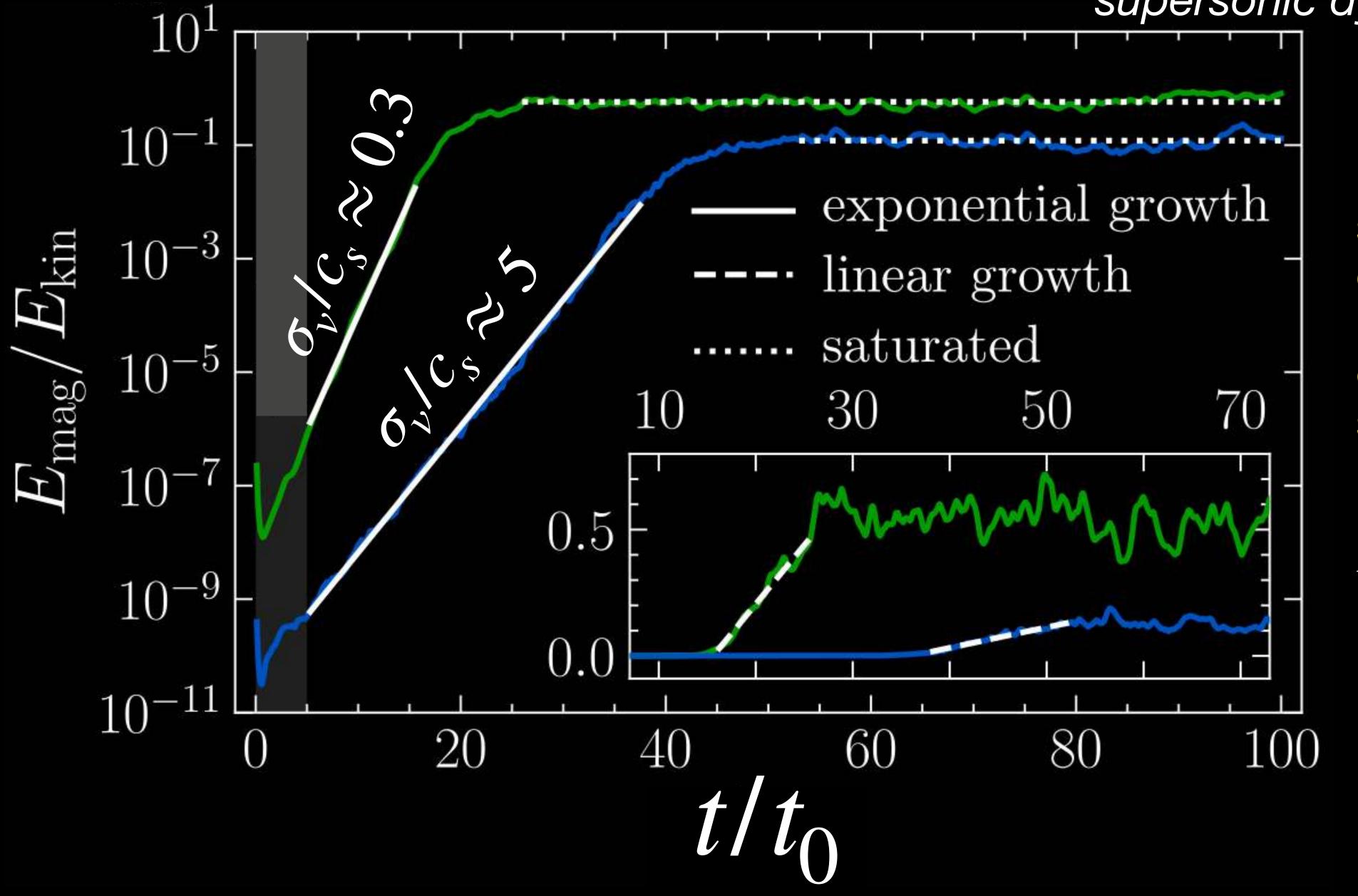
Integral statistics

Kriel, Beattie+ (2024). Fundamental scales II: the kinematic stage of the supersonic dynamo



Integral statistics

Kriel, Beattie+ (2024). Fundamental scales II: the kinematic stage of the supersonic dynamo



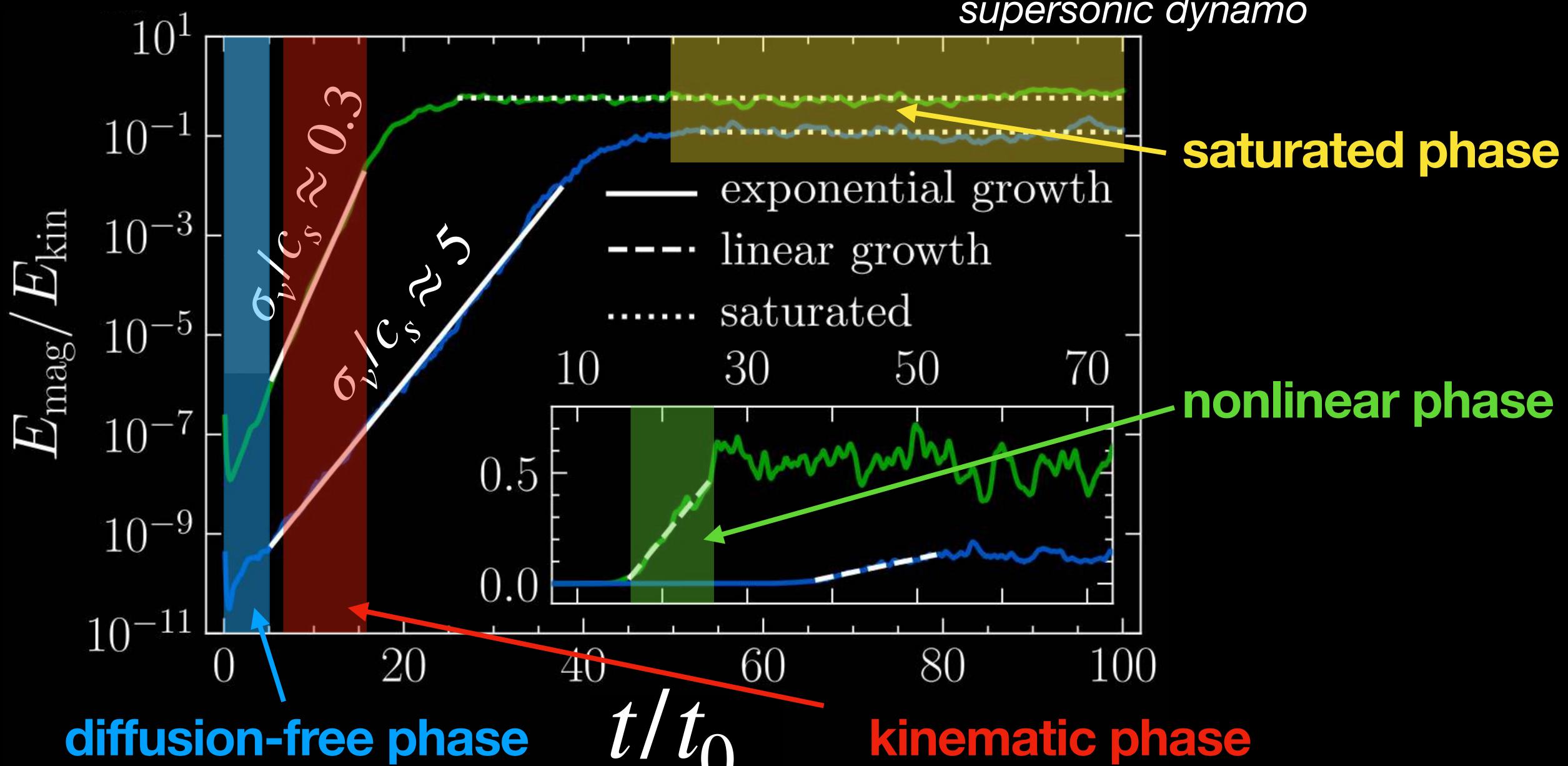
For fixed material properties, saturation and growth rate always lower and less efficient than in subsonic dynamos!

$$E_{\text{mag}} = \langle b^2 \rangle / (2\mu_0)$$

$$E_{\text{kin}} = \langle \rho v^2 \rangle / 2$$

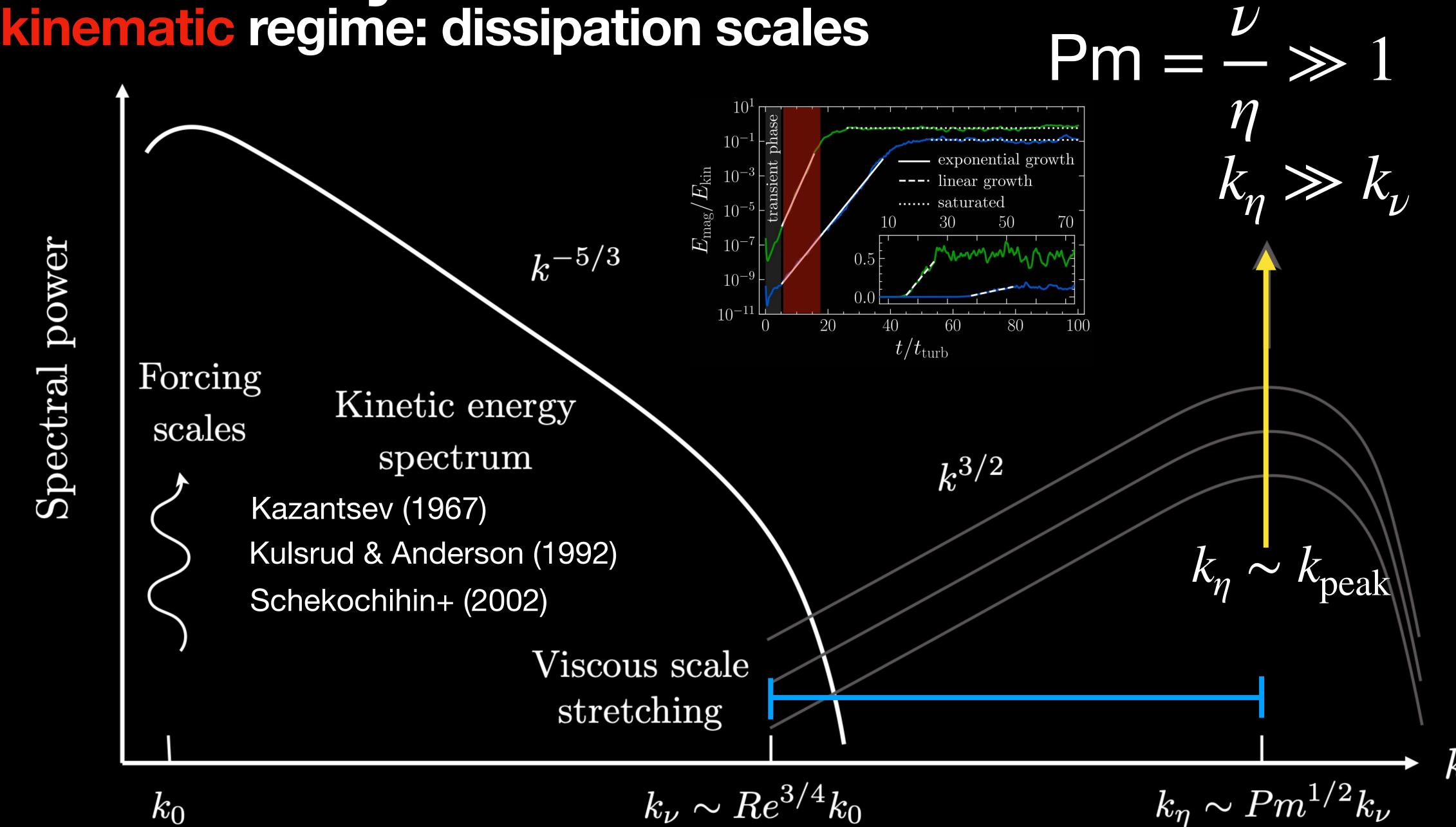
Integral statistics

Kriel, Beattie+ (2024). Fundamental scales II: the kinematic stage of the supersonic dynamo



Modified from Rincon (2019)

Turbulent dynamo kinematic regime: dissipation scales



Turbulent dynamo kinematic regime dissina

Modified from Rincon (2019)

kinematic regime: dissipation scales

 $Pm = \frac{\nu}{-} \gg 1$

stretching at the viscous scale

$$\frac{u_{\nu}}{\ell_{\nu}} \sim \frac{\eta}{\ell_{\eta}^2}$$

dissipation at the resistive scale

$$\mathcal{E}_{\eta} \sim \left(\frac{\ell_{\nu}\eta}{u_{\nu}}\right)^{1/2} \sim \left(\frac{\nu\ell_{\nu}}{u_{\nu}}\right)^{1/2} \operatorname{Pm}^{-1/2} \sim \ell_{\nu} \operatorname{Pm}^{-1/2}$$

Second fastest growing stage

another prediction... independent of cascade

Prediction from Schekochihin+ 2002,04 Viscous scale

stretching

 $k_{\eta} \sim Pm^{1/2}k_{\nu}$

 $k_{\nu} \sim Re^{3/4}k_0$

 k_0

Turbulent dynamo kinematic regime: the resistive scale

Neco Kriel Grad. Student (ANU)

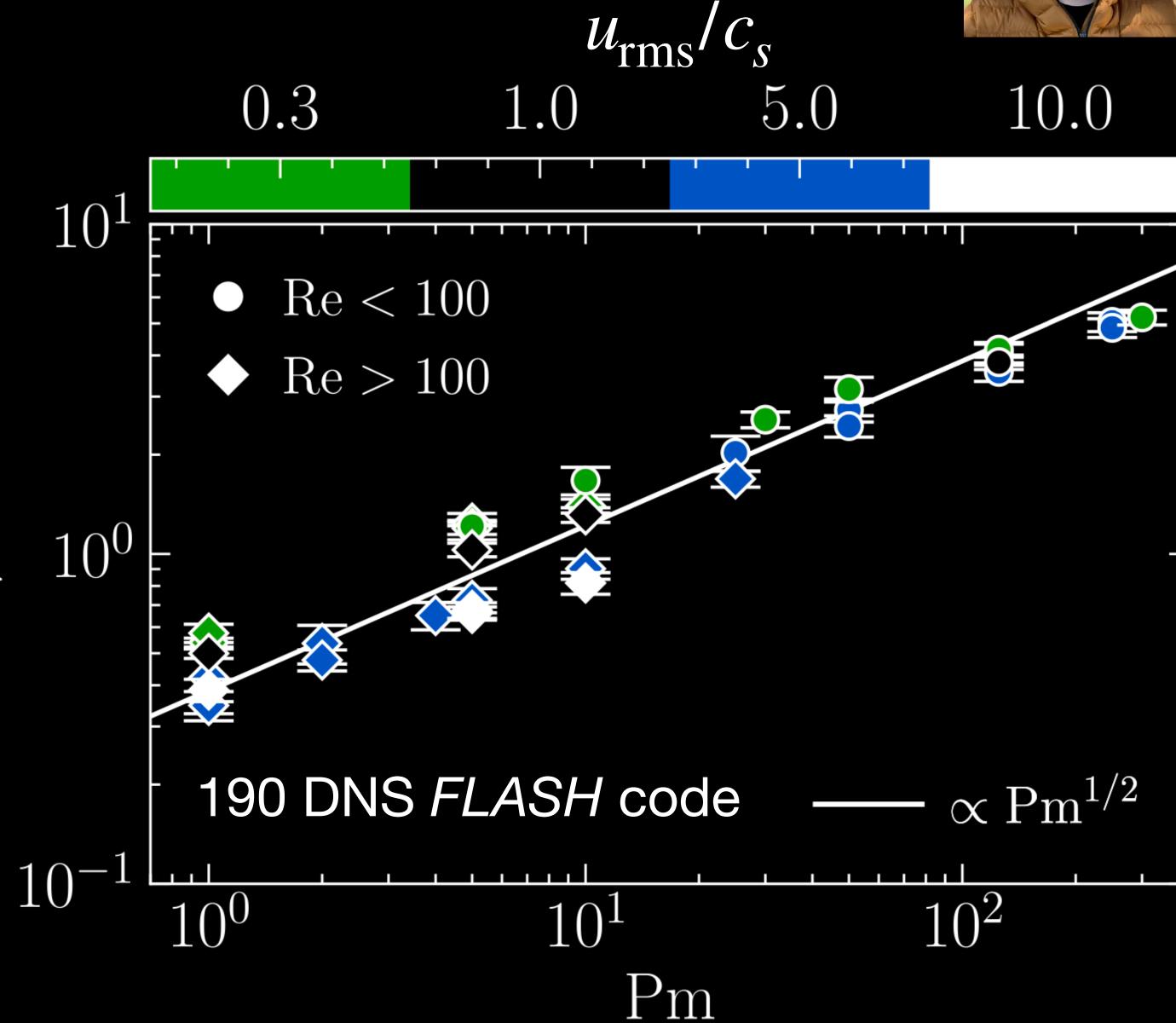
stretching at the viscous scale

$$\frac{u_{\nu}}{\ell_{\nu}} \sim \frac{\eta}{\ell_{\eta}^2}$$

dissipation at the resistive scale

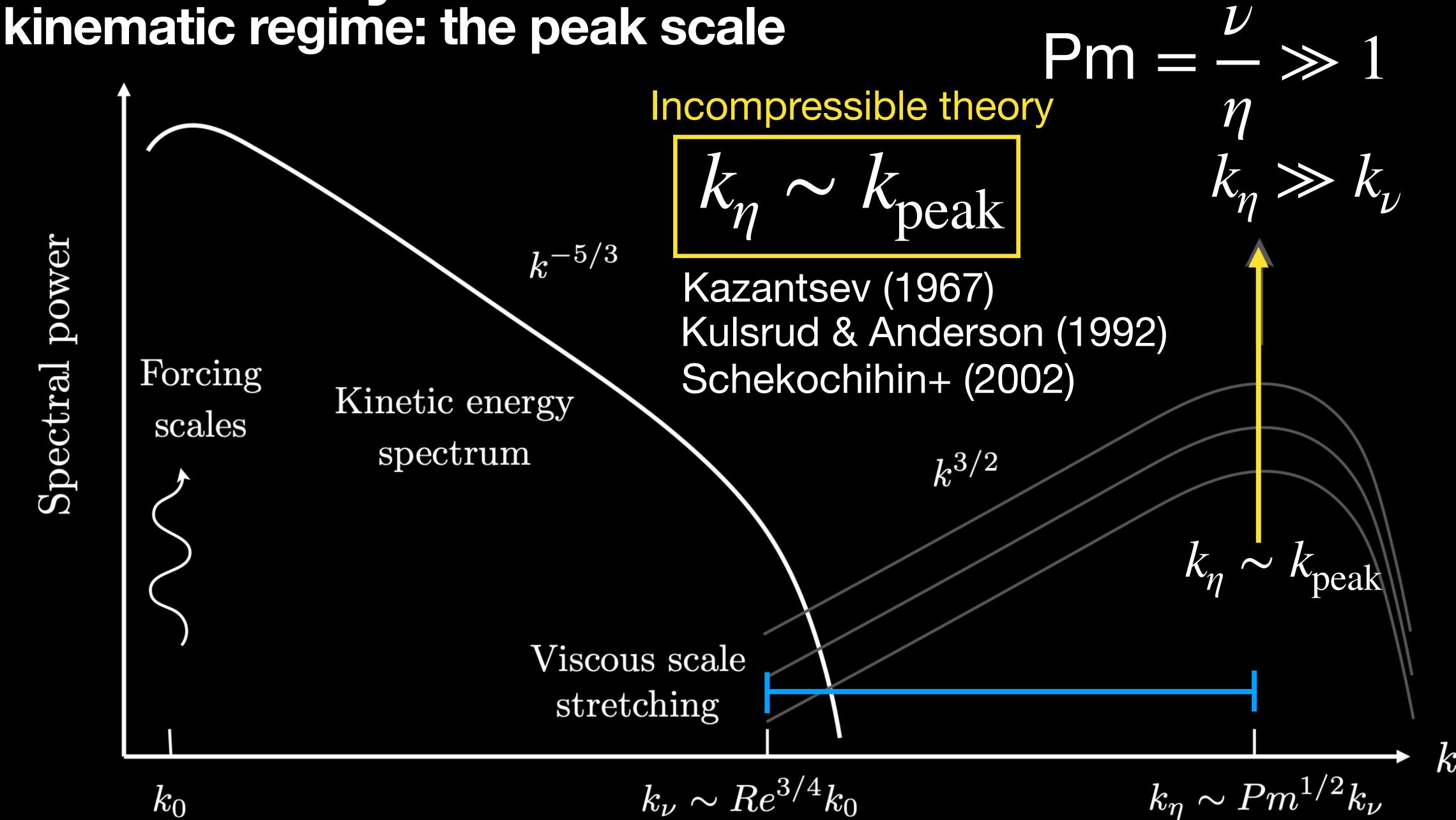
- 1. universal of super-sub-sonic gas motions.
- 2. implies the viscous scale eddies the engine for kinematic dynamo in both regimes

Kriel, Beattie+ (2024). Fundamental scales II: the kinematic stage of the supersonic dynamo



Turbulent dynamo kinematic regime: the peak scale

Modified from Rincon (2019)

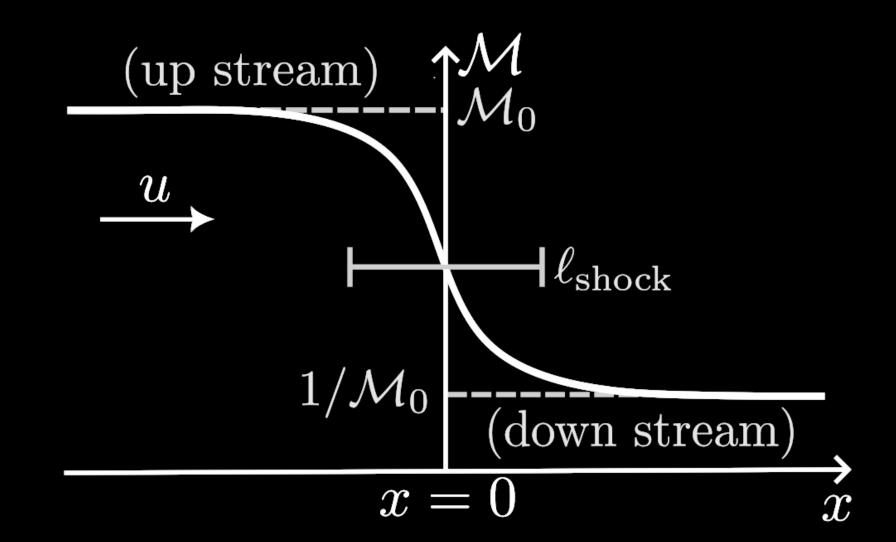


Neco Kriel Grad. Student (ANU)

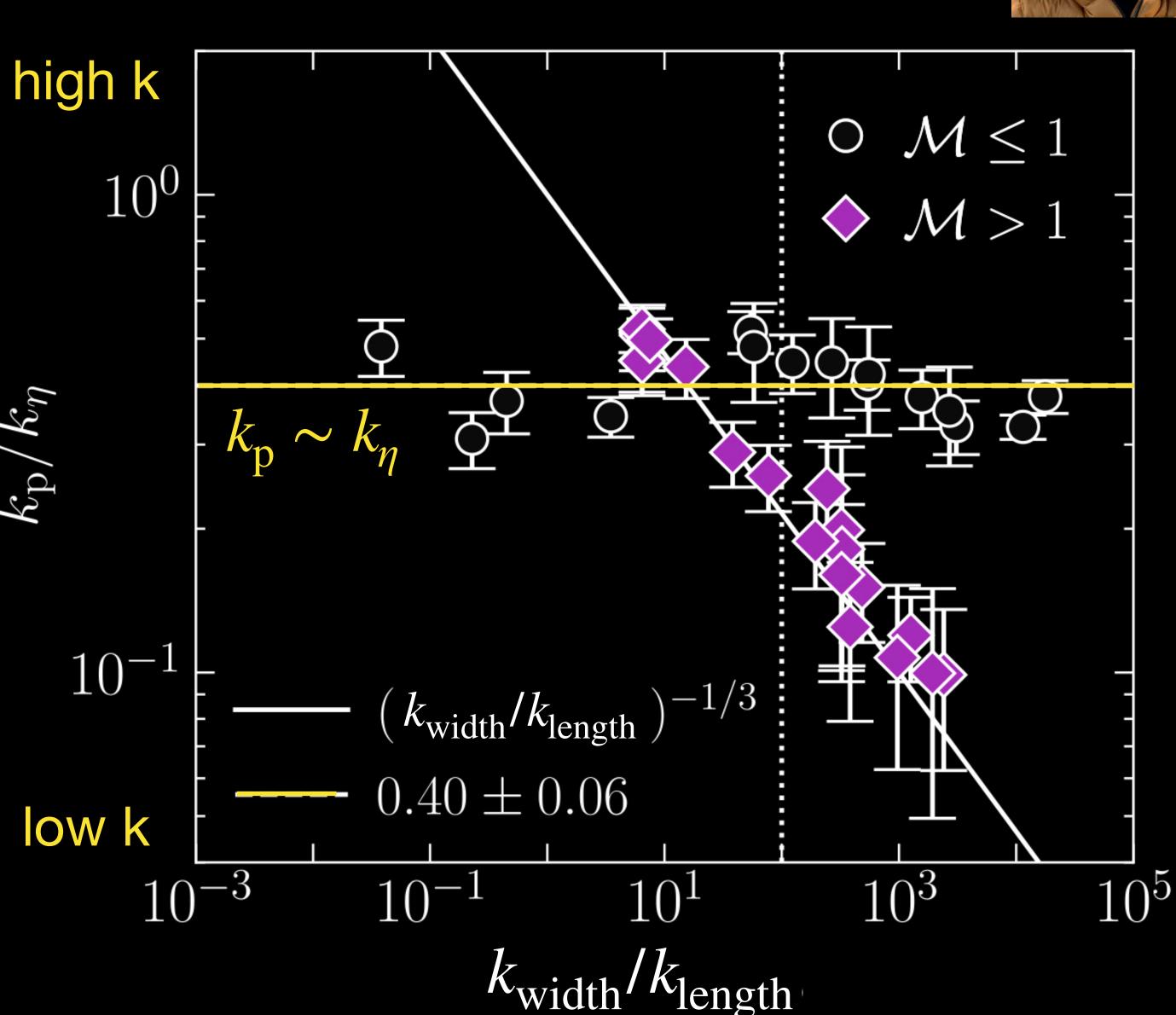
Characteristic shock geometry

$$k_{\text{length}} \sim k_0$$

 $k_{\text{width}} \sim \mathcal{M}^2/\text{Re}(\mathcal{M}-1)^2$



Kriel, Beattie+ (2024). Fundamental scales II: the kinematic stage of the supersonic dynamo



Neco Kriel Grad. Student (ANU)

Characteristic shock geometry

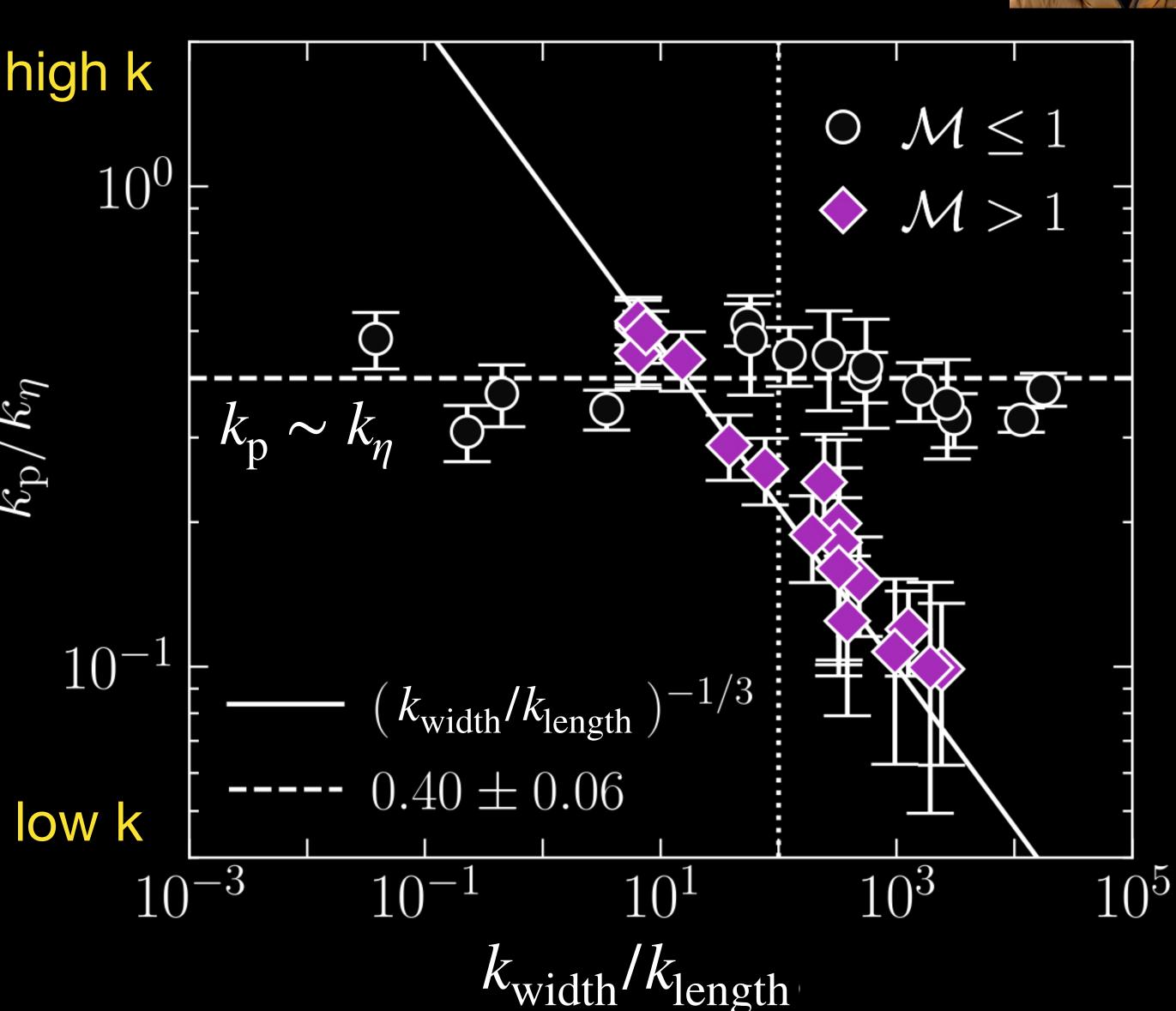
$$k_{\text{length}} \sim k_0$$

$$k_{\text{width}} \sim \mathcal{M}^2/\text{Re}(\mathcal{M}-1)^2$$

Peak magnetic energy scale moves to lower k modes, away from resistive scales.

Supersonic dynamo builds larger scale b fields compared to subsonic.

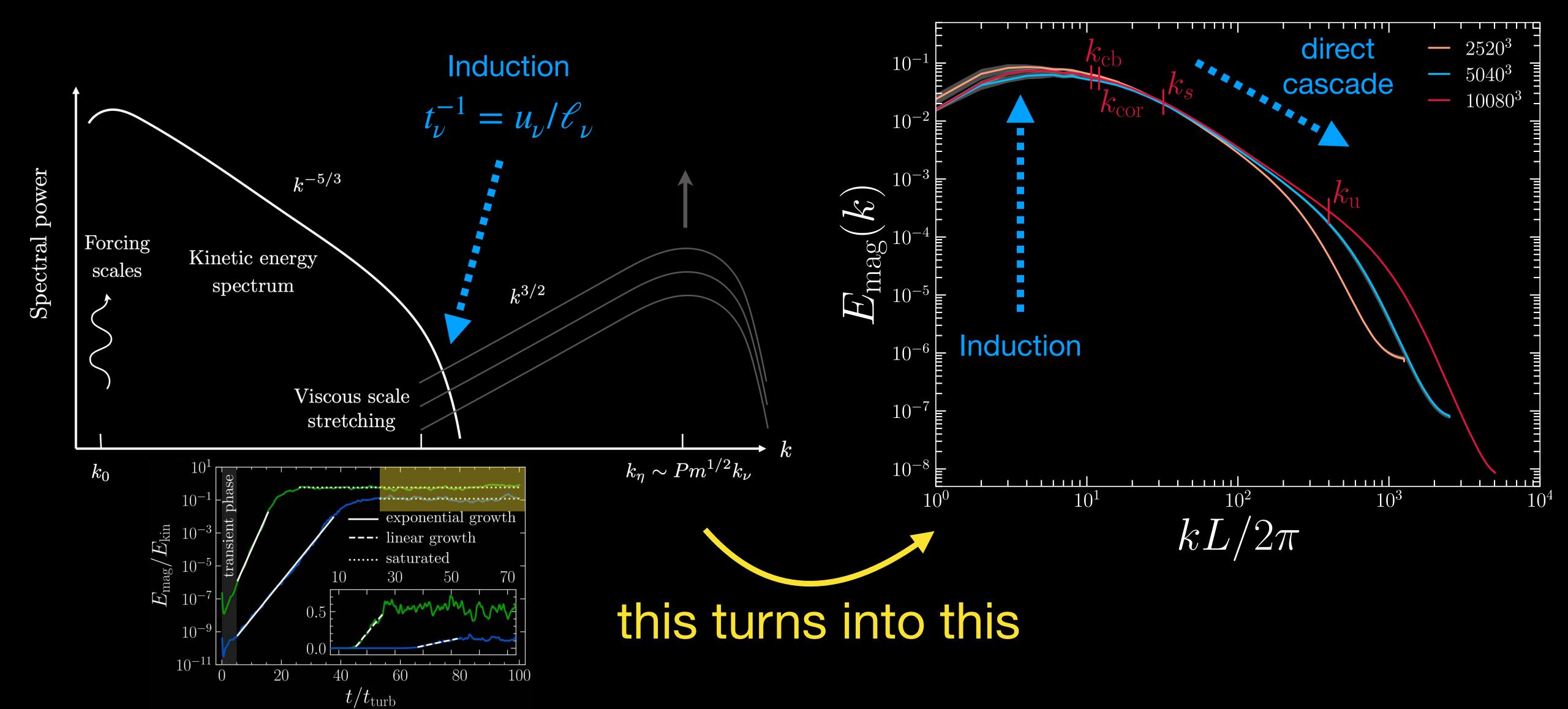
Kriel, Beattie+ (2024). Fundamental scales II: the kinematic stage of the supersonic dynamo



Saturated supersonic turbulent dynamo

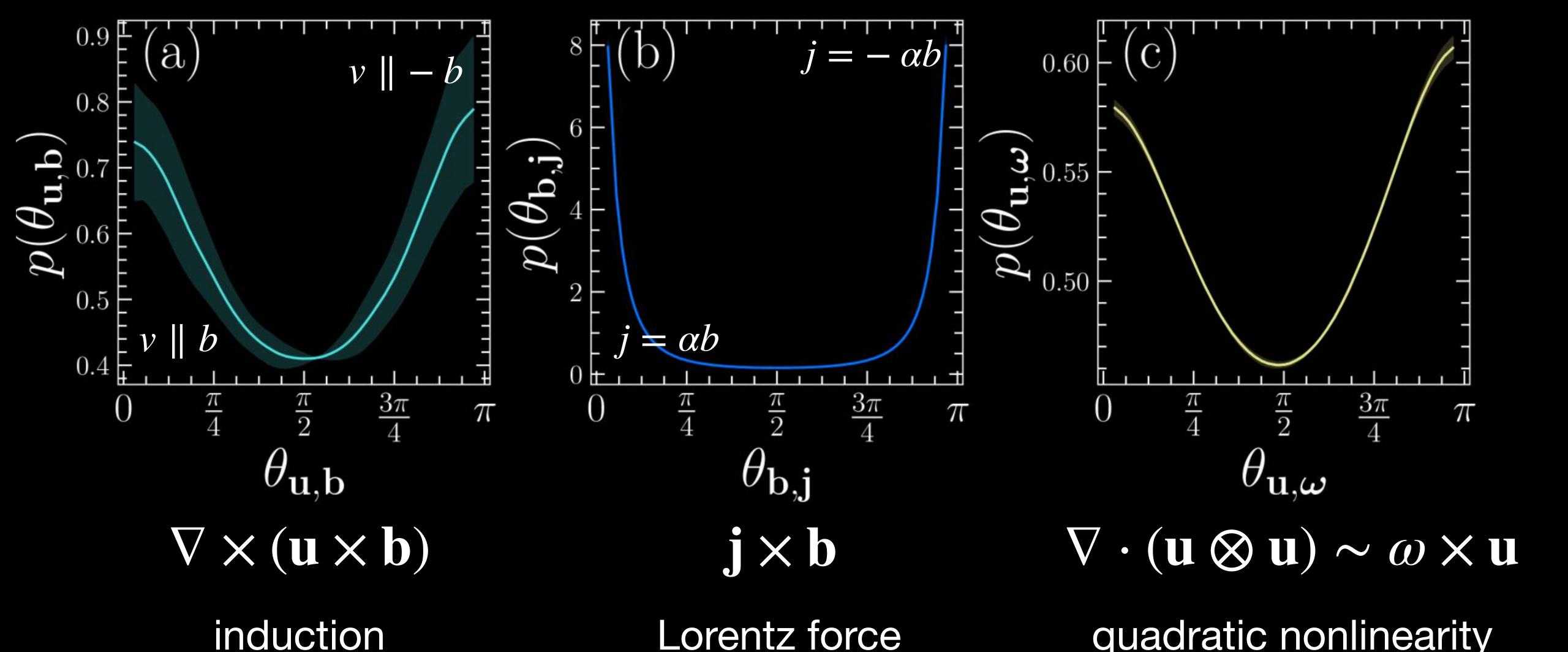
Kinematic (linear) dynamo

Saturated (nonlinear) dynamo



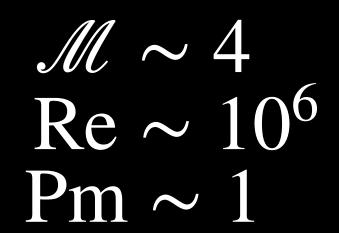
Supersonic turbulent dynamo at $Re \sim 10^6$ Saturated regime: global alignment

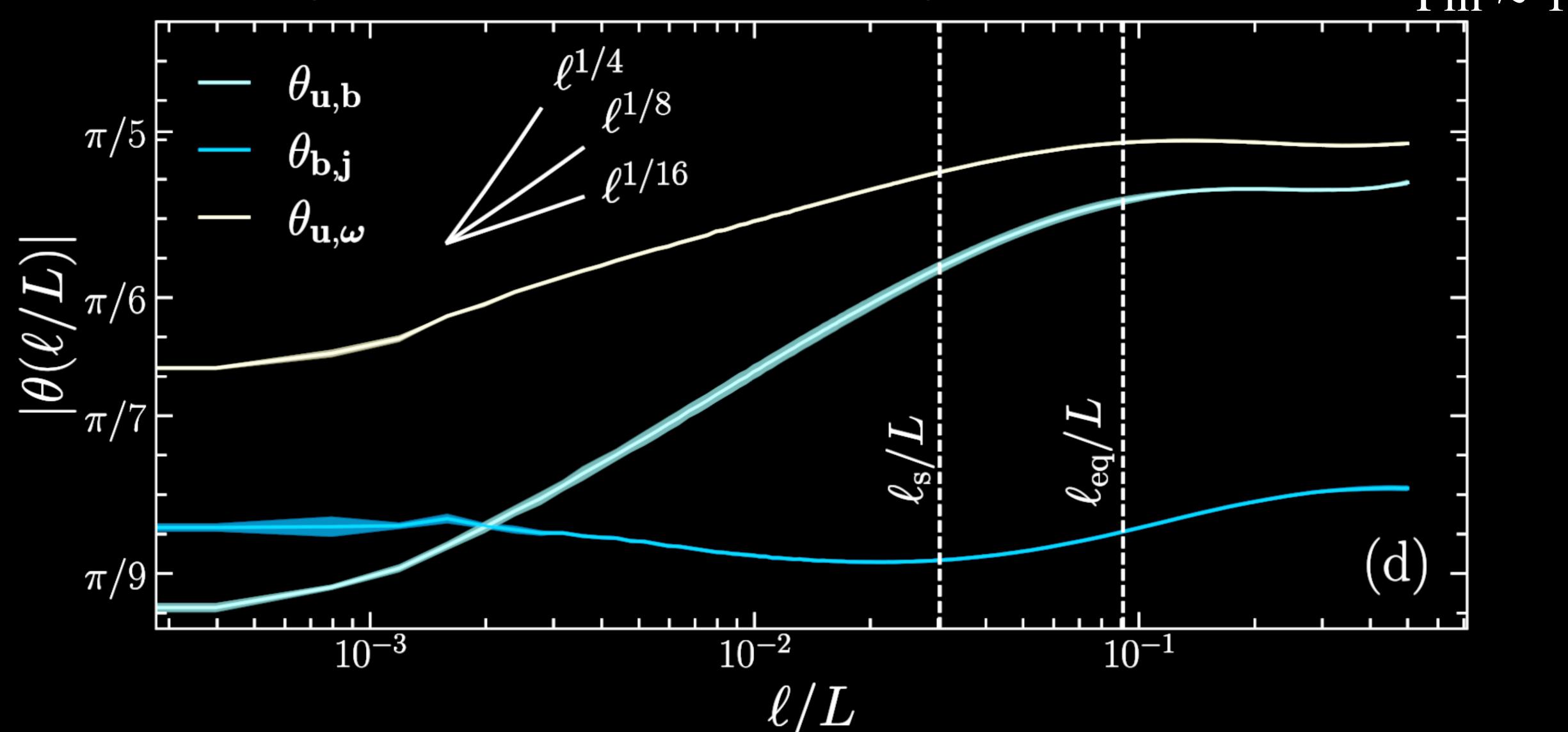
 $\begin{array}{c} \mathcal{M} \sim 4 \\ \text{Re} \sim 10^6 \\ \text{Pm} \sim 1 \end{array}$



Beattie et al. (2024, subm.). Supersonic, magnetised turbulence at extreme Reynold's numbers

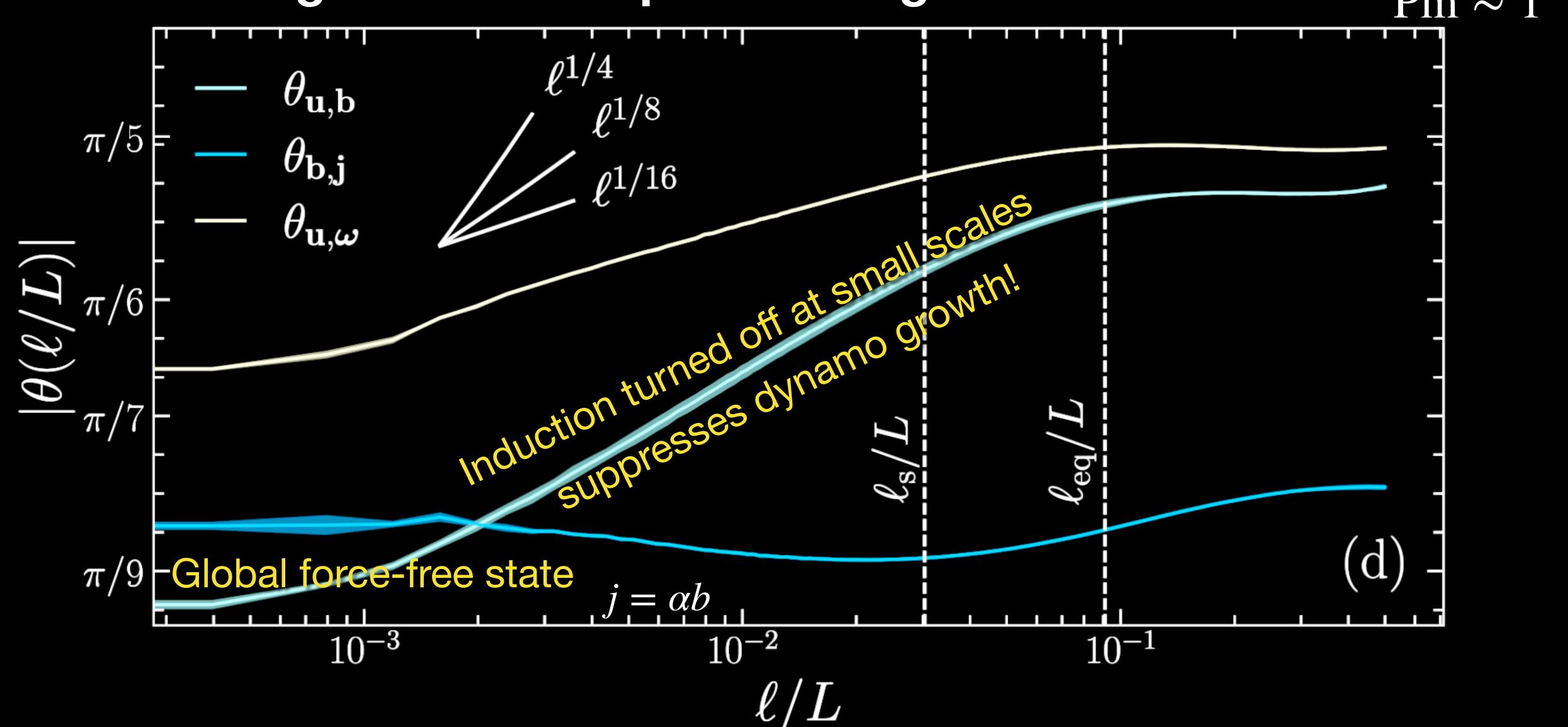
Supersonic turbulent dynamo at $Re \sim 10^6$ Saturated regime: scale-dependent alignment



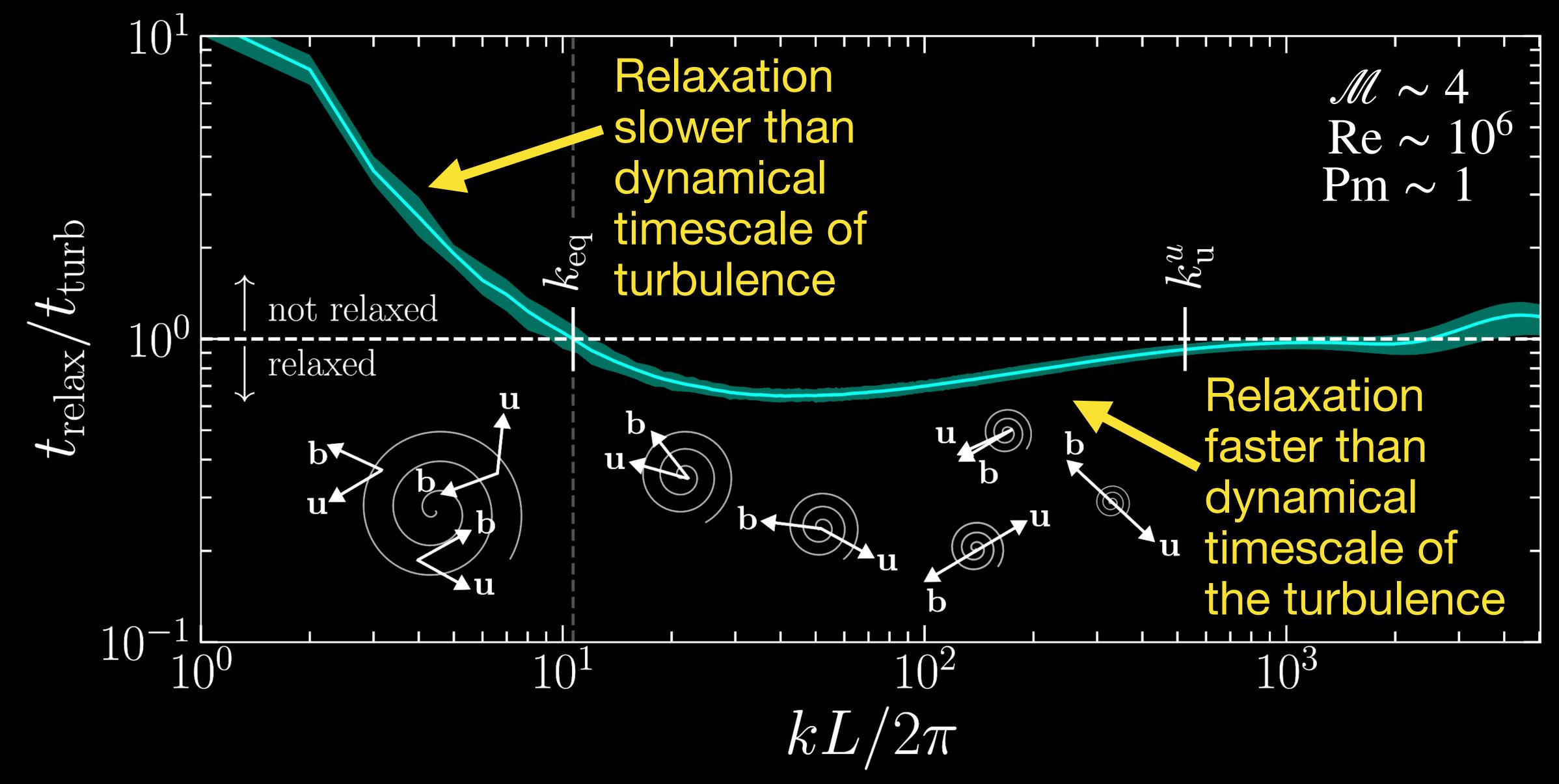


Supersonic turbulent dynamo at $Re \sim 10^6$ Saturated regime: scale-dependent alignment

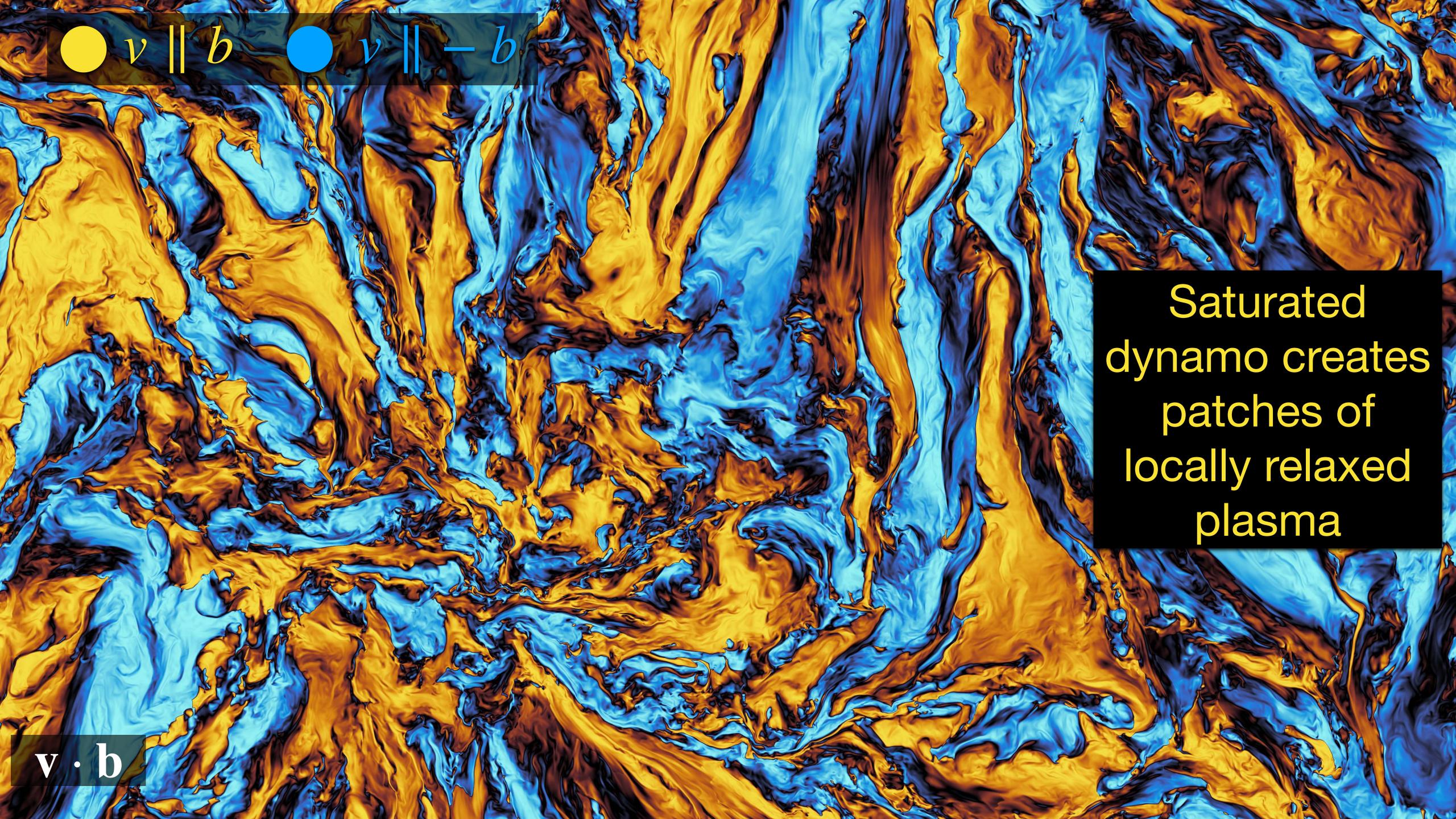
 $\mathcal{M} \sim 4$ Re $\sim 10^6$ Pm ~ 1



Plasma relaxation deep in the cascade



Beattie et al. (2024, subm). Supersonic, magnetised turbulence at extreme Reynold's numbers



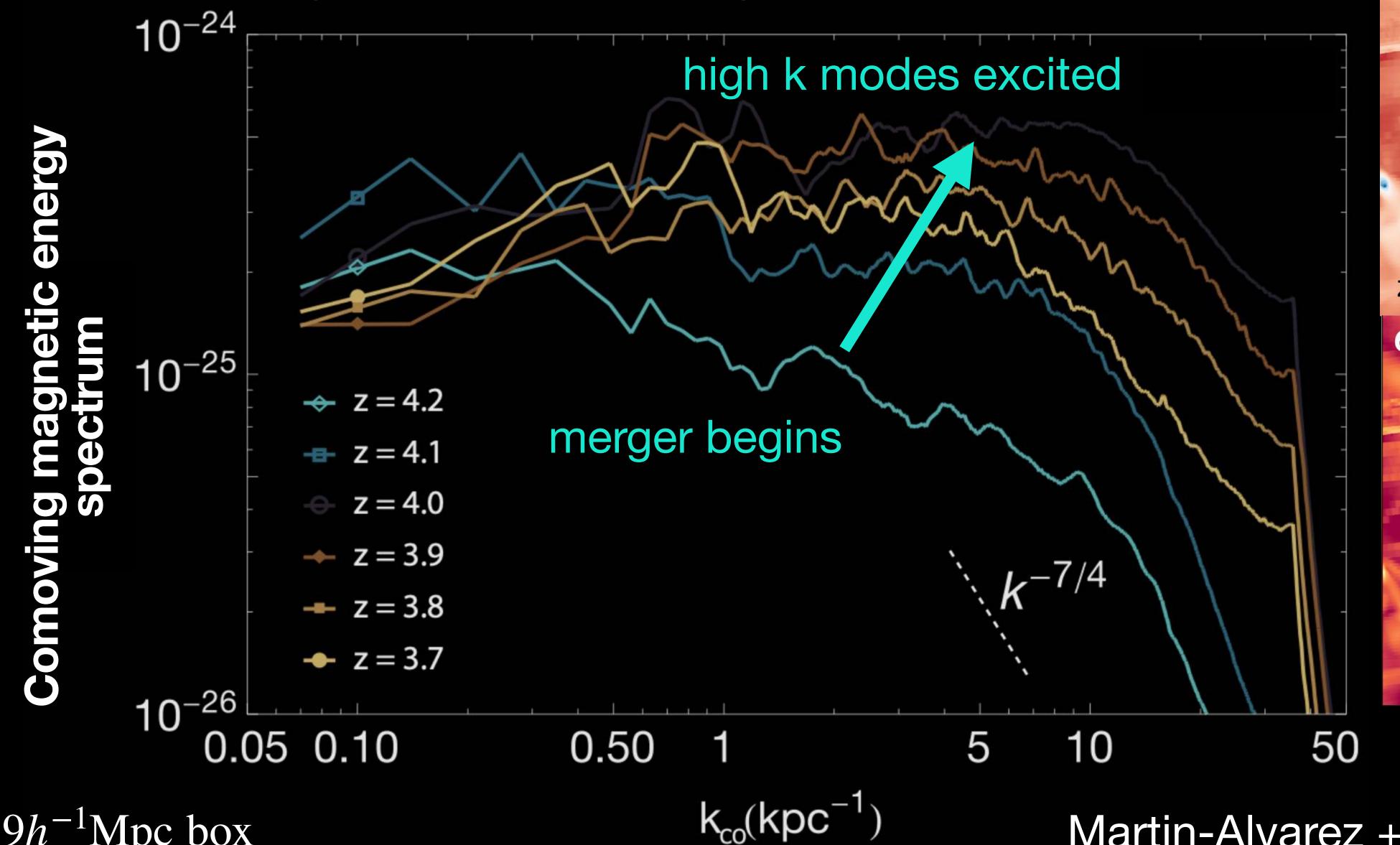
Thanks, questions?

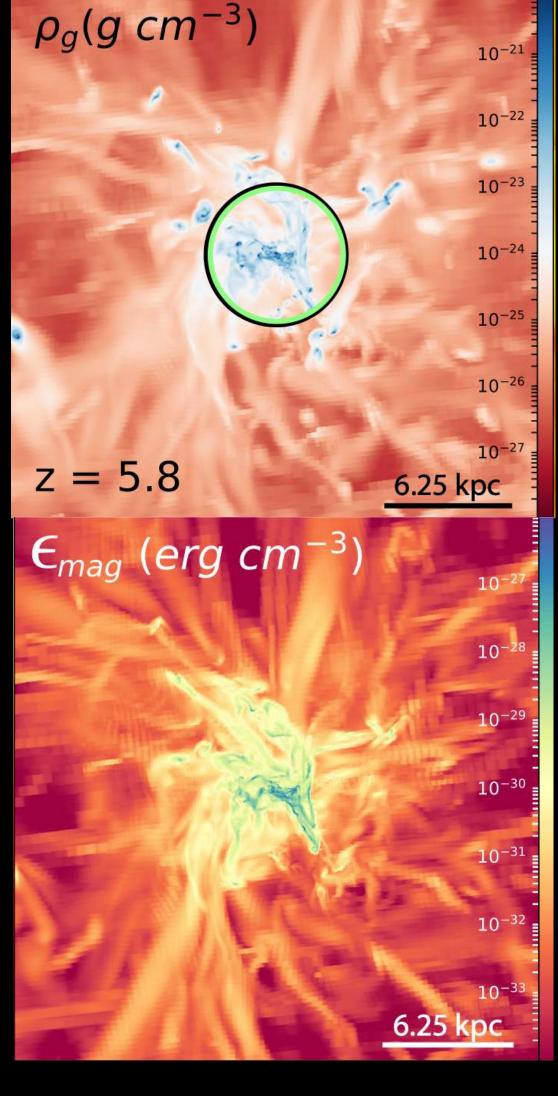
- 1. The viscous scale is the engine for the small-scale dynamo, supersonic or subsonic (universality of Pm^{1/2} relation).
- 2. In kinematic supersonic dynamo magnetic energy spectrum deviates from Kazantsev theory $(k_{\text{peak}} \neq k_{\eta})$ and peak energy becomes sensitive to aspect ratio of shocks.
- 3. Small scale dynamos saturate through an alignment process due to local plasma relaxation.

Extra slides

Examples of small scale dynamos

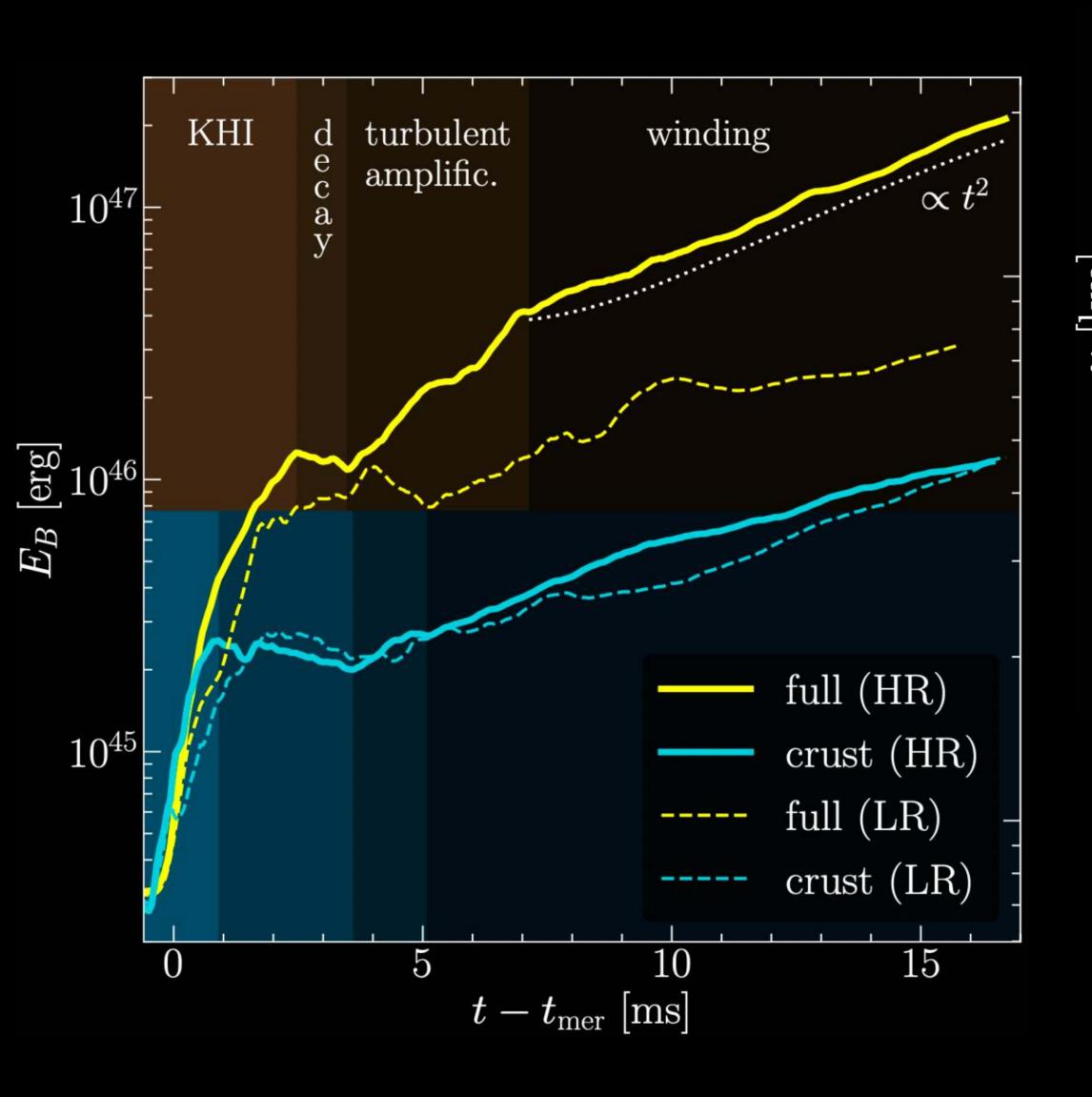
Galaxy mergers in cosmological sims

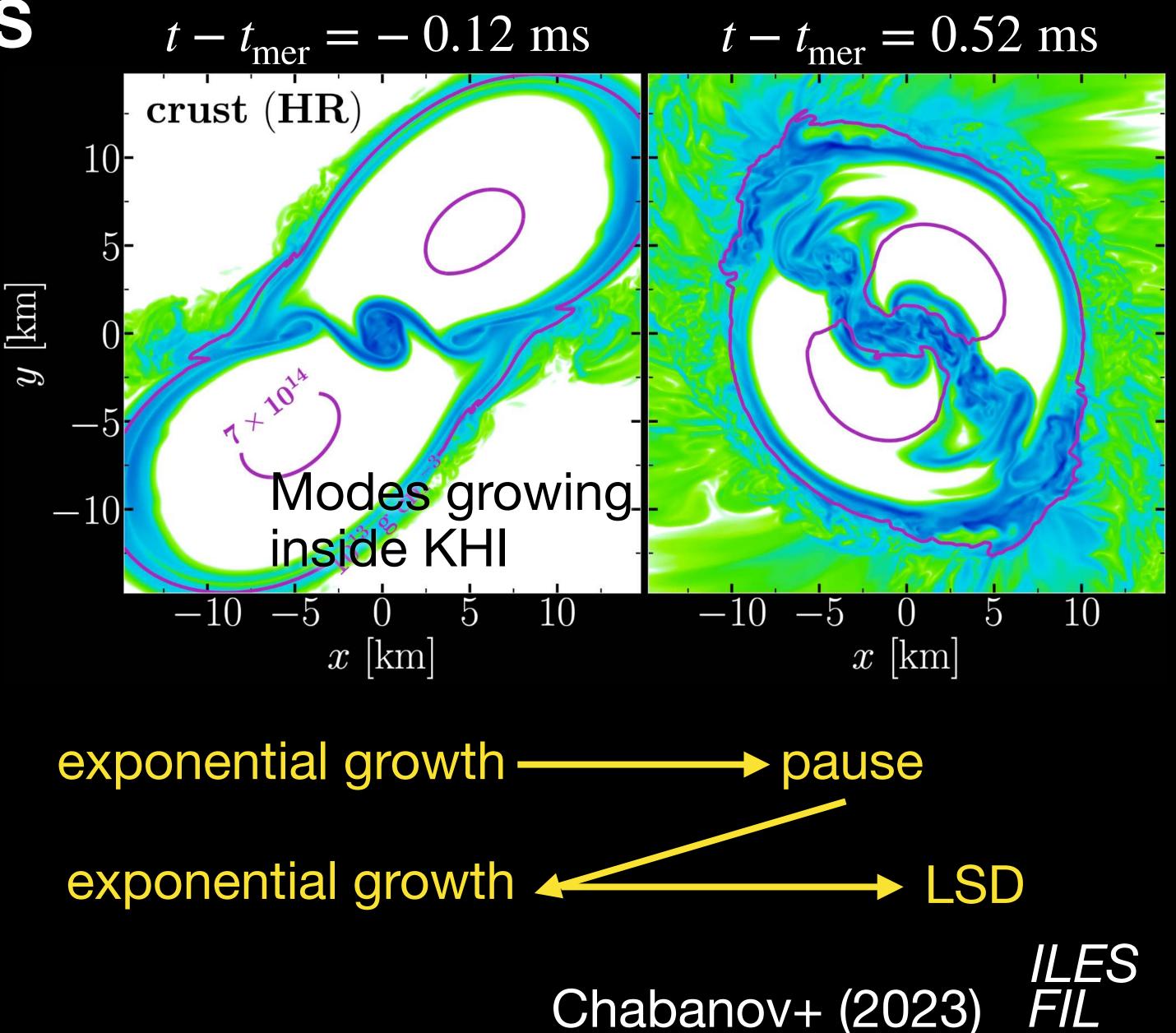




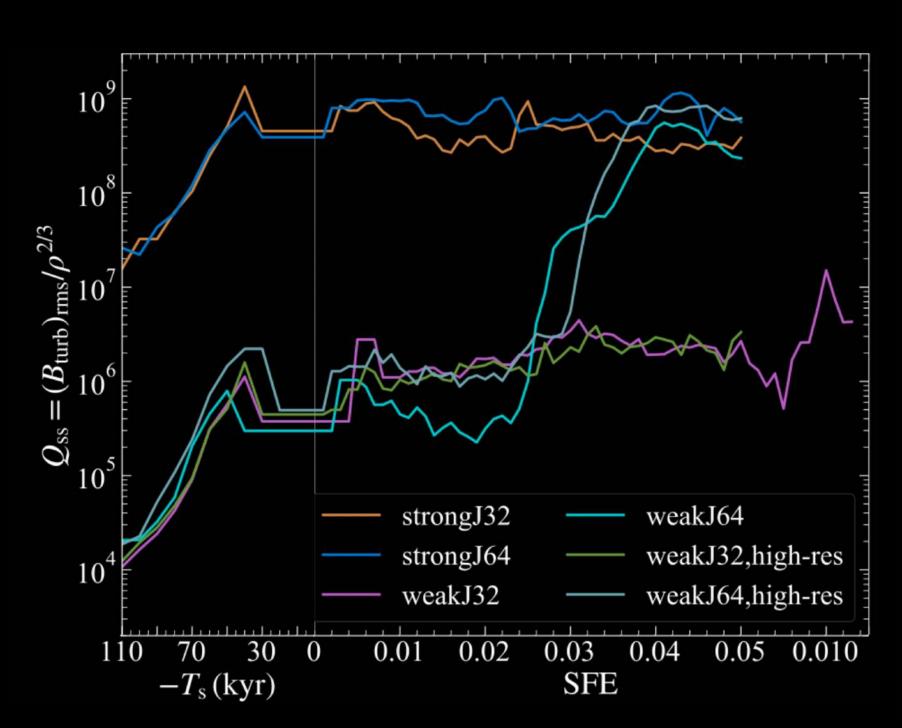
Examples of small scale dynamos

KHI instabilities in merging NS



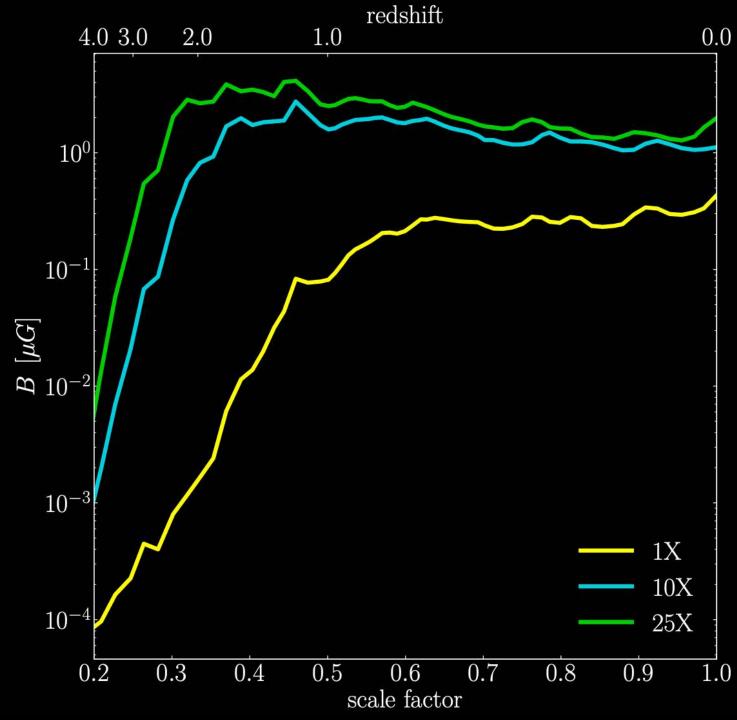


Examples of small scale dynamos There are many, across all scales (all MHD)

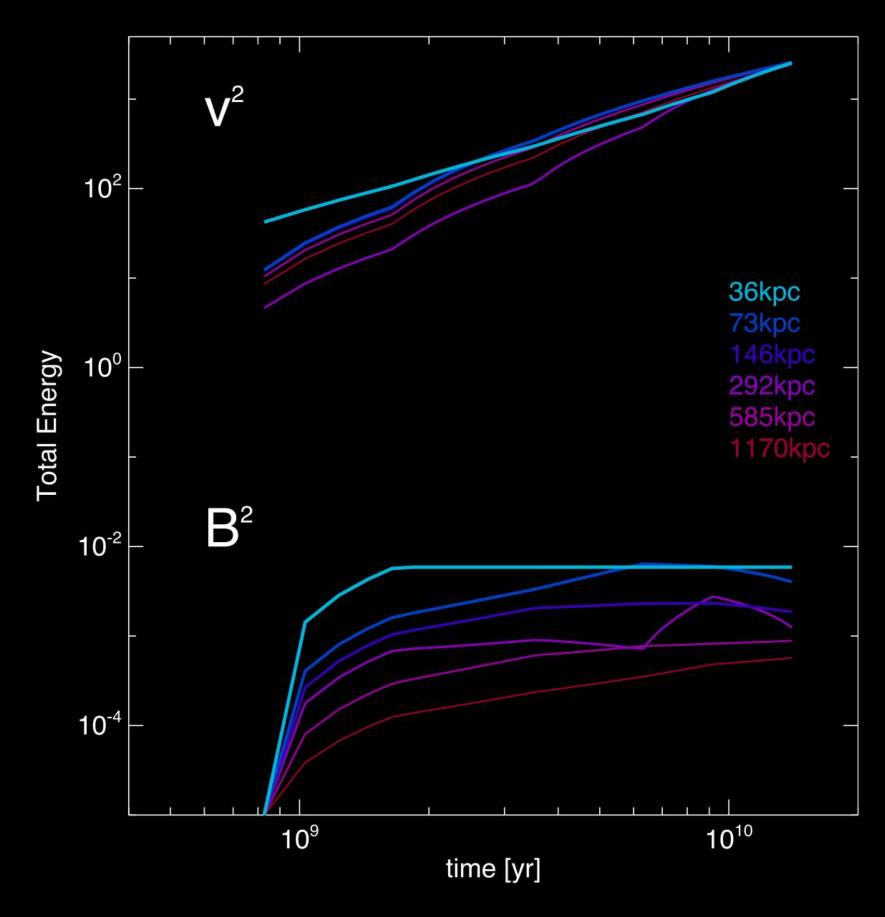


Molecular clouds in first generation stars

Steinwandel+2021



Intracluster medium



Cosmic filaments

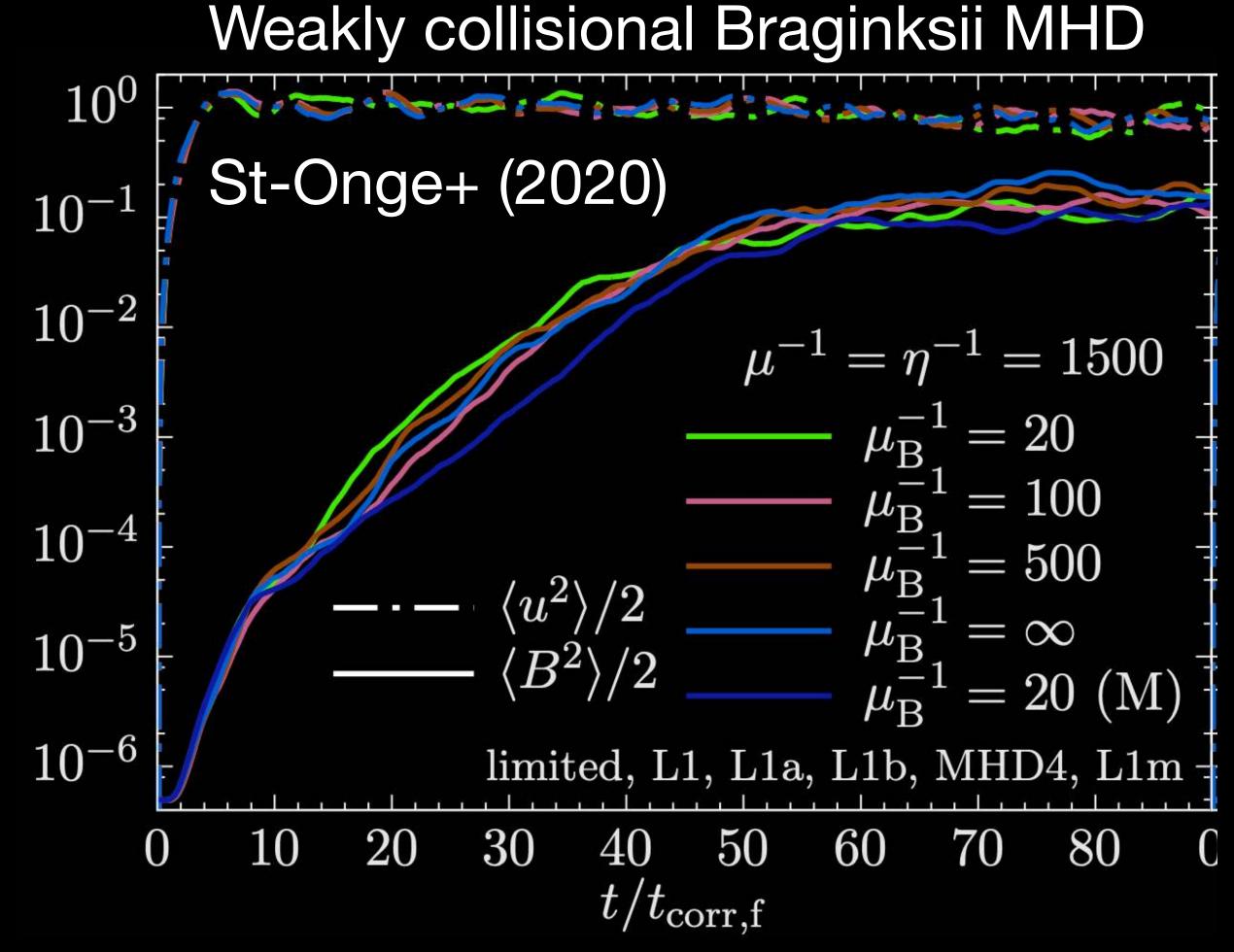
RAMSES

ENZO

FLASH

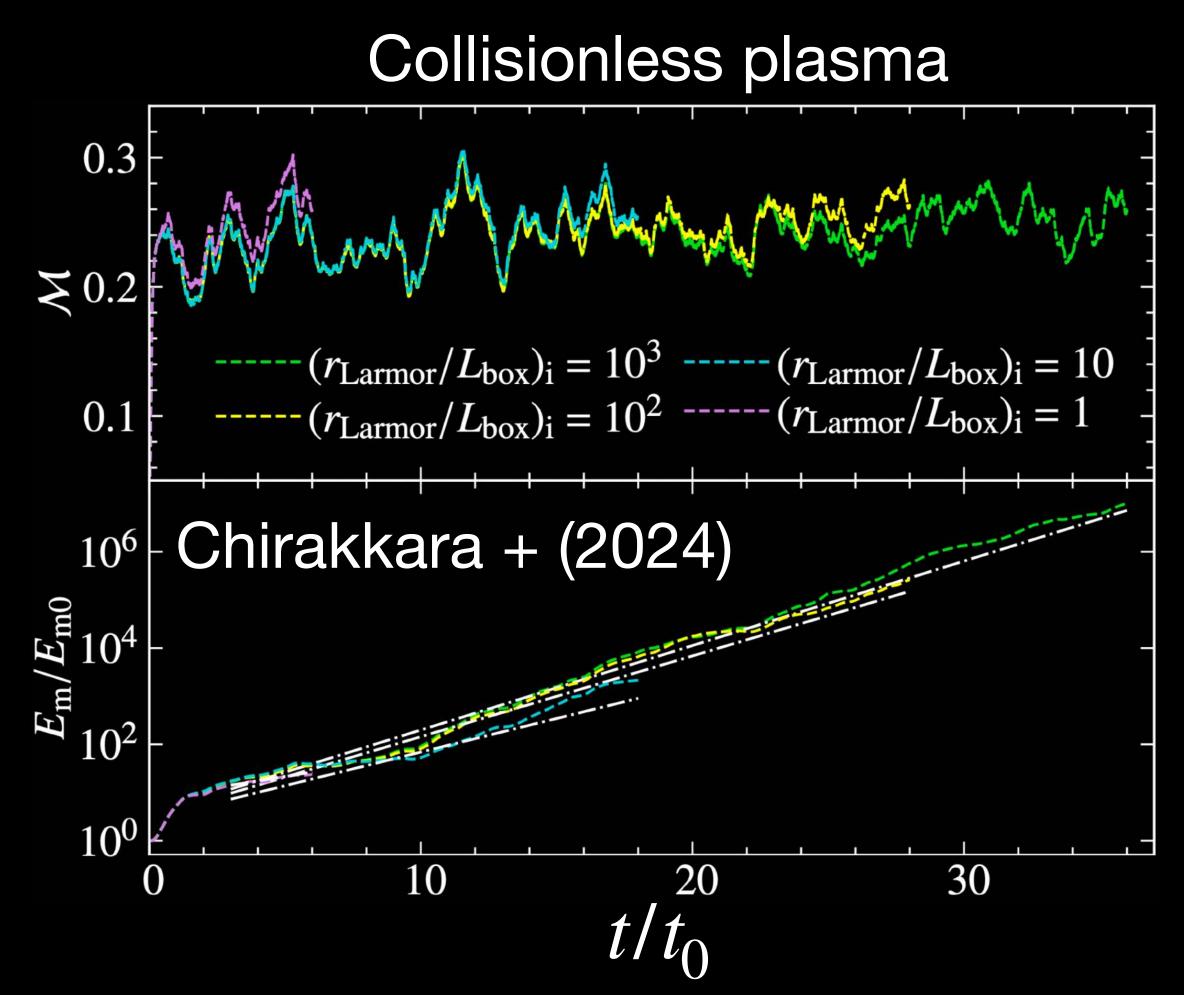
Examples of small scale dynamos

and plasma regimes



(added anisotropic viscous Braginskii stress term into MHD)

 $\nabla \cdot (\hat{\mathbf{b}} \otimes \hat{\mathbf{b}}(\hat{\mathbf{b}} \otimes \hat{\mathbf{b}} : \nabla \mathbf{v}))$ Snoopy



(Hybrid-Kinetic PIC: electron fluid + ion PIC)

FLASH

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\partial_t(\rho \mathbf{u}) + \nabla \cdot \left(\rho \mathbf{u} \otimes \mathbf{u} + p \mathbb{I} - \frac{1}{4\pi} \mathbf{b} \otimes \mathbf{b}\right) = \rho \mathbf{f} + \nabla \cdot \mathbb{D}_{\nu}(\rho \mathbf{u})$$

$$\partial_t \mathbf{b} + \nabla \cdot (\mathbf{u} \otimes \mathbf{b} - \mathbf{b} \otimes \mathbf{u}) = \nabla \cdot \mathbb{D}_{\eta}(\mathbf{b})$$

$$\nabla \cdot \mathbf{b} = 0$$

$$p = c_s^2 \rho + \frac{1}{8\pi} \mathbf{b} \cdot \mathbf{b}$$

the turbulence source function

$$d\hat{\mathbf{f}}(\mathbf{k}, t) = f_0(\mathbf{k}) \mathbb{P}(\mathbf{k}) \cdot d\mathbf{W}(t) - \hat{\mathbf{f}}(\mathbf{k}, t) \frac{dt}{t_0}$$

dW(t) Weiner process that draws delta correlated from $\sim \mathcal{N}(0,1)$

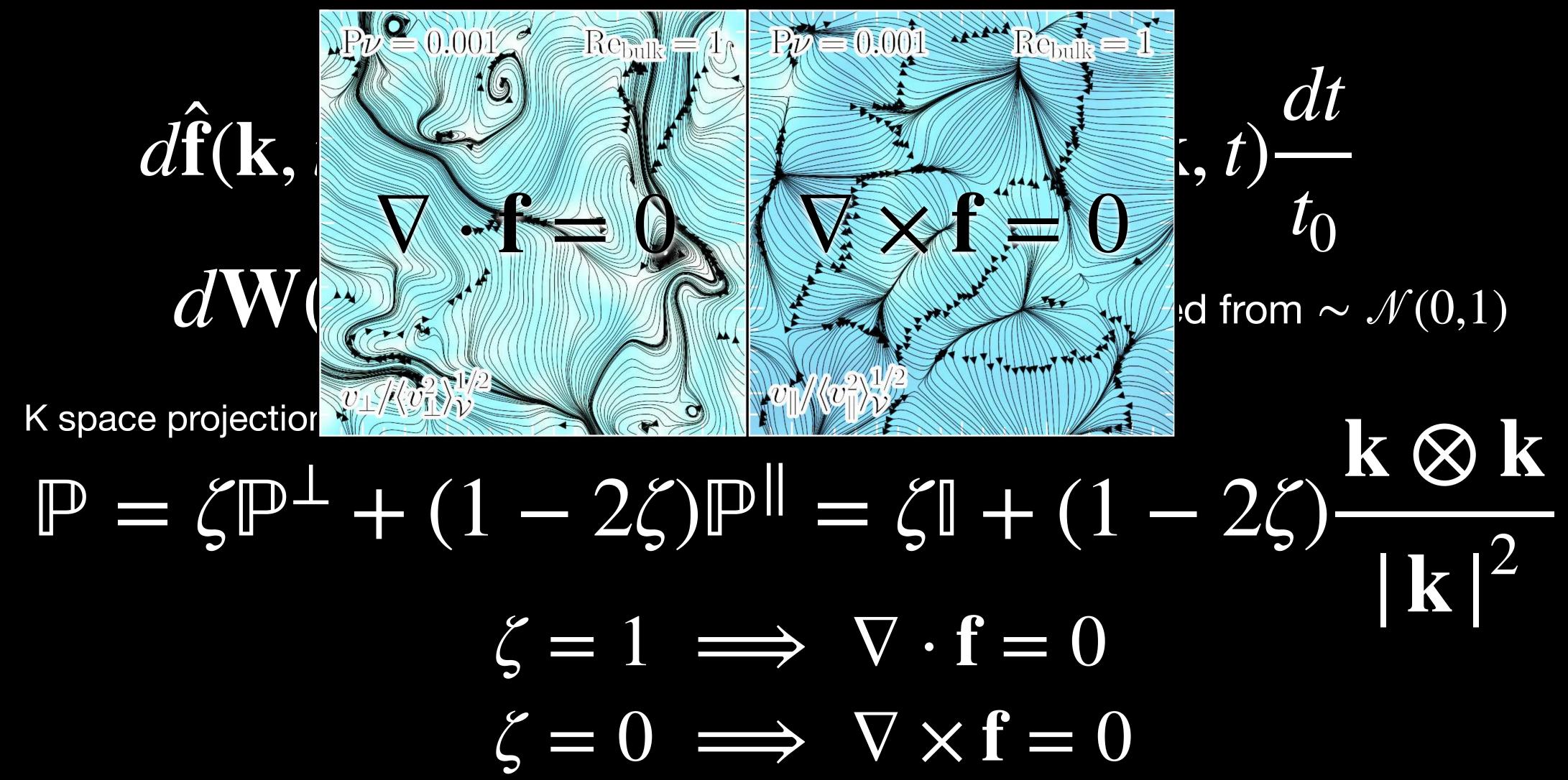
K space projection tensor

$$\mathbb{P} = \zeta \mathbb{P}^{\perp} + (1 - 2\zeta) \mathbb{P}^{\parallel} = \zeta \mathbb{I} + (1 - 2\zeta) \frac{\mathbf{k} \otimes \mathbf{k}}{|\mathbf{k}|^{2}}$$

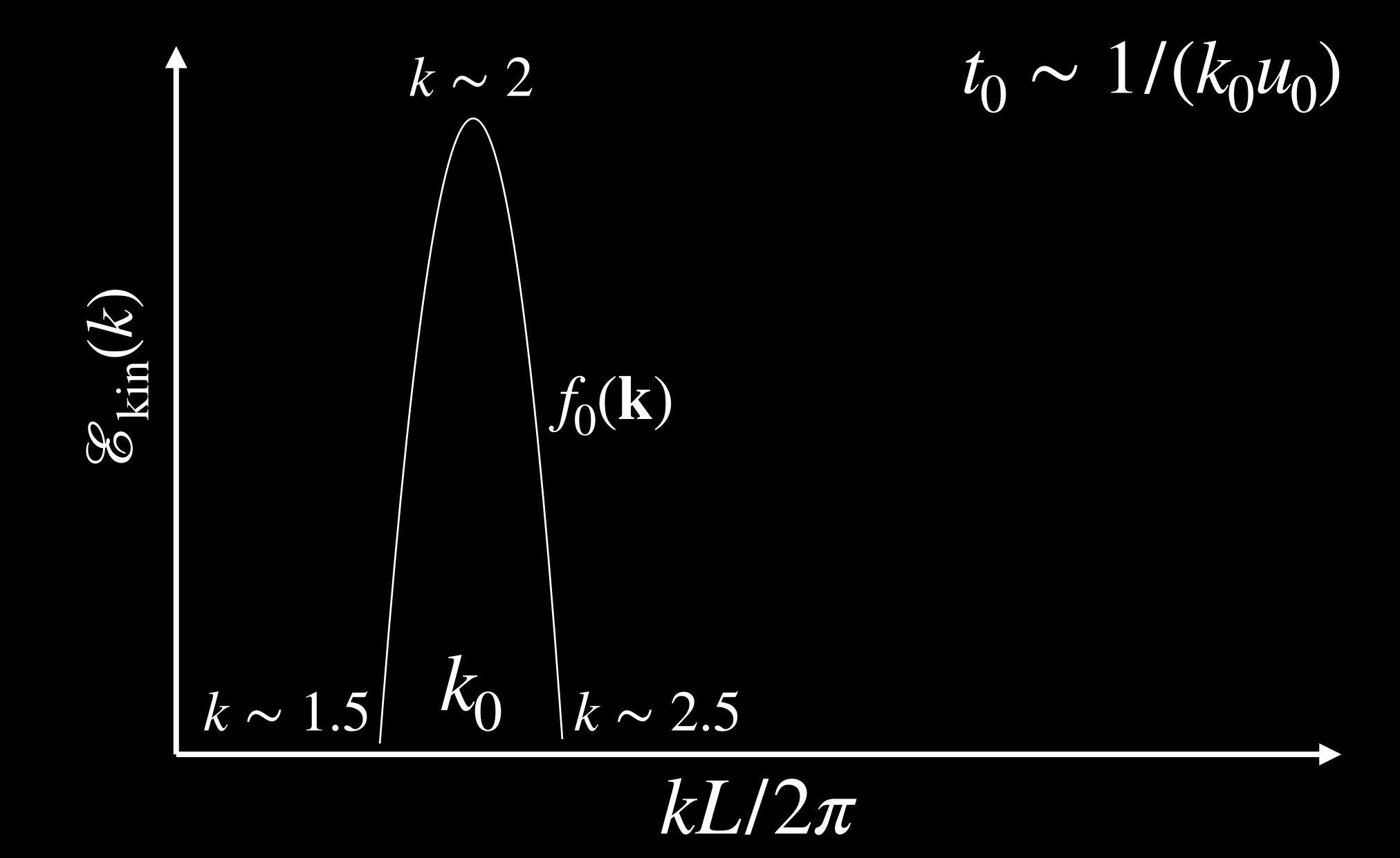
$$\zeta = 1 \implies \nabla \cdot \mathbf{f} = 0$$

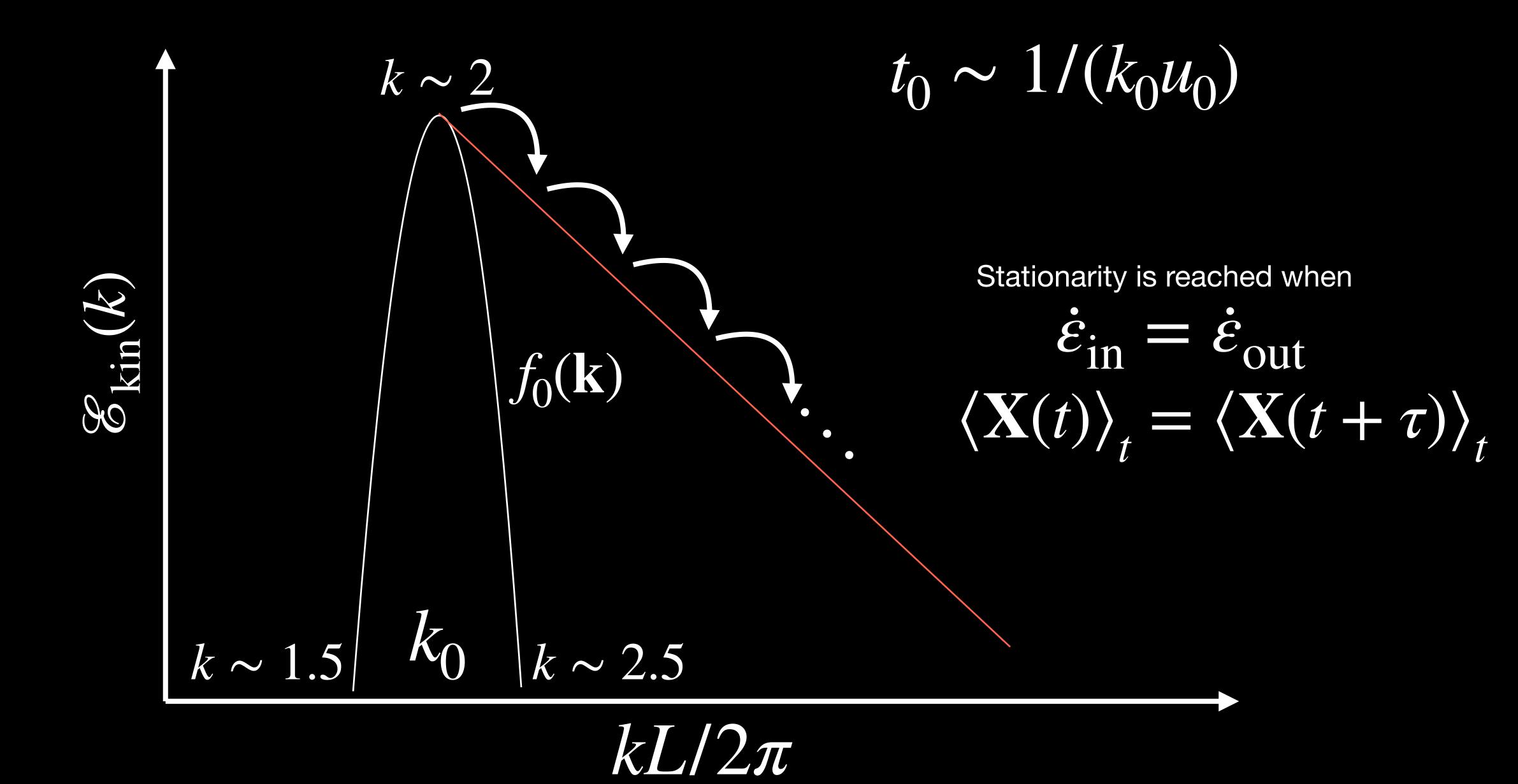
$$\zeta = 0 \implies \nabla \times \mathbf{f} = 0$$

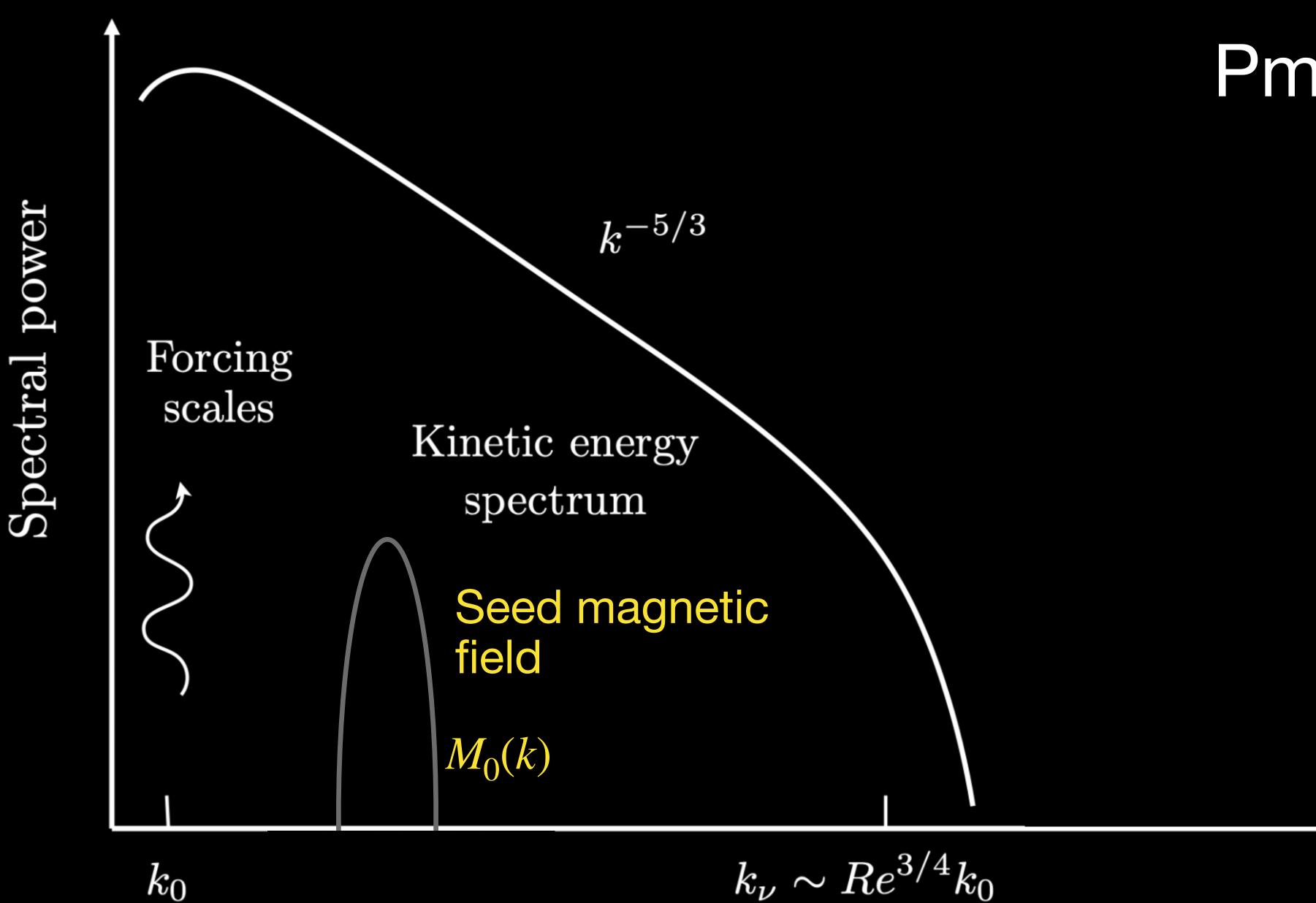
e-folding time of the forcing / correlation time / outer-scale turbulent turnover time



 $t_{
m O}$ e-folding time of the forcing / correlation time / outer-scale turbulent turnover time





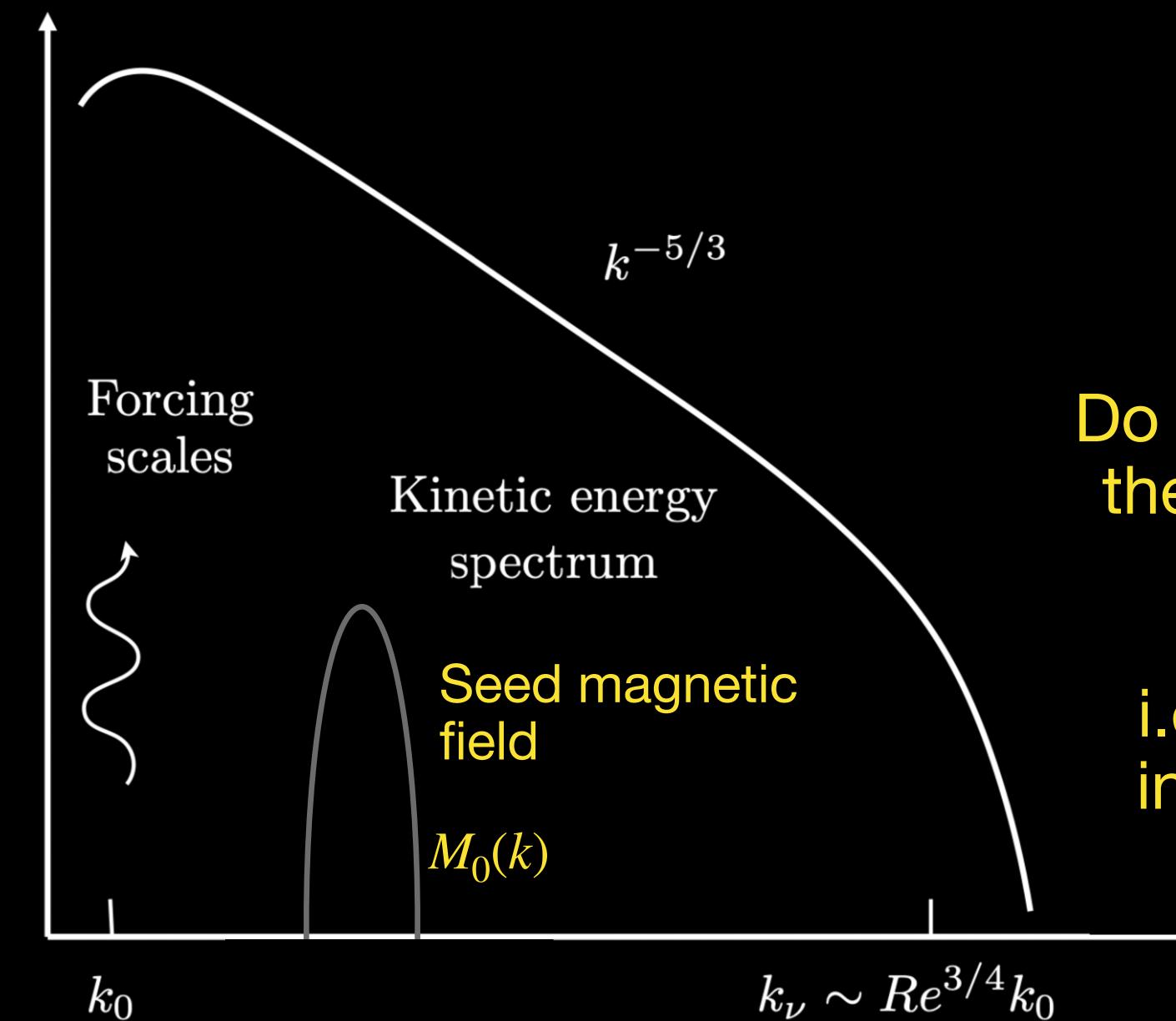


$$Pm = \frac{\nu}{-} \gg 1$$

$$k_{\eta} \gg k_{\nu}$$

Turbulent dynamo

Modified from Rincon (2019)



$$Pm = \frac{\nu}{m} \gg 1$$

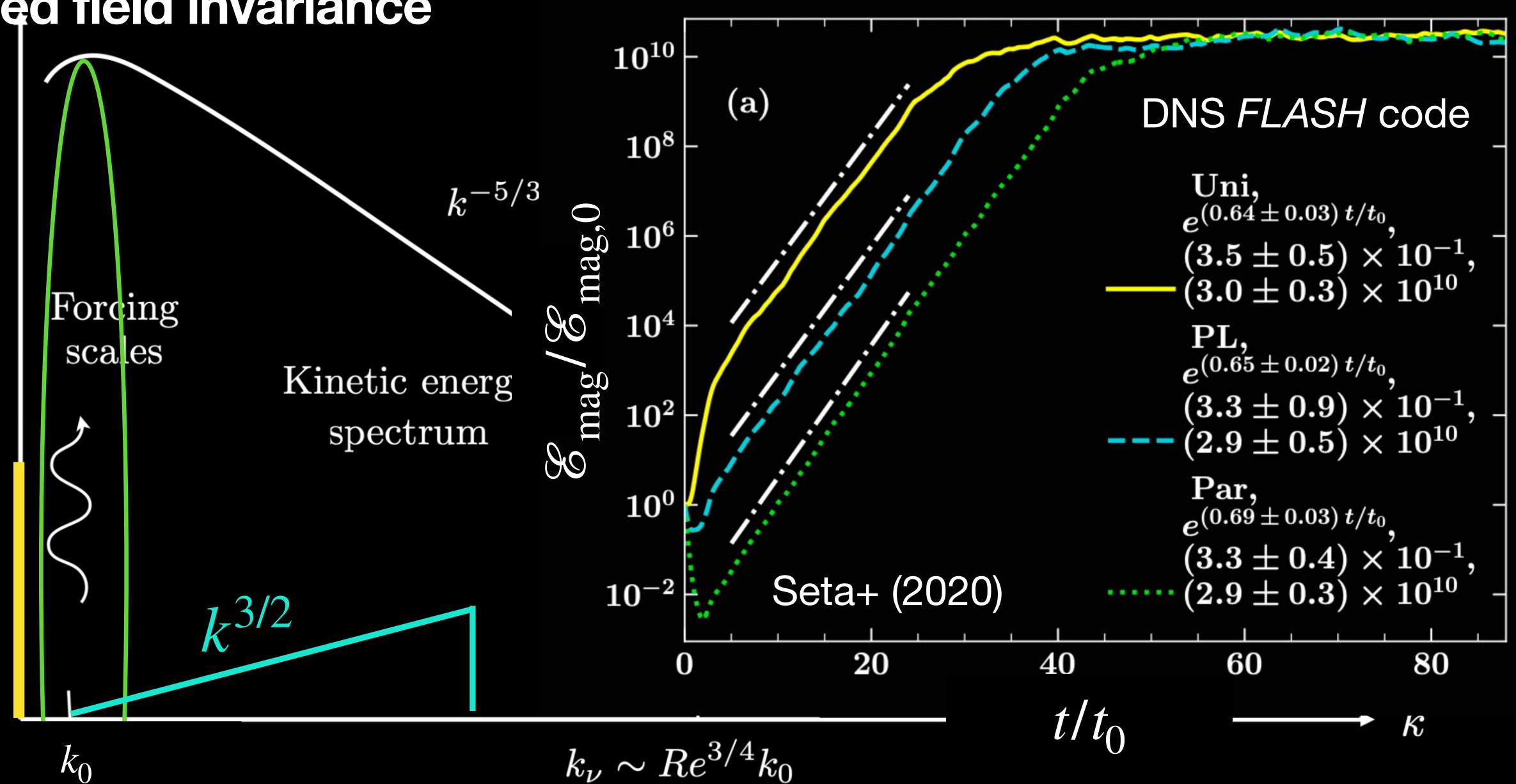
$$k_{\eta} \gg k_{\nu}$$

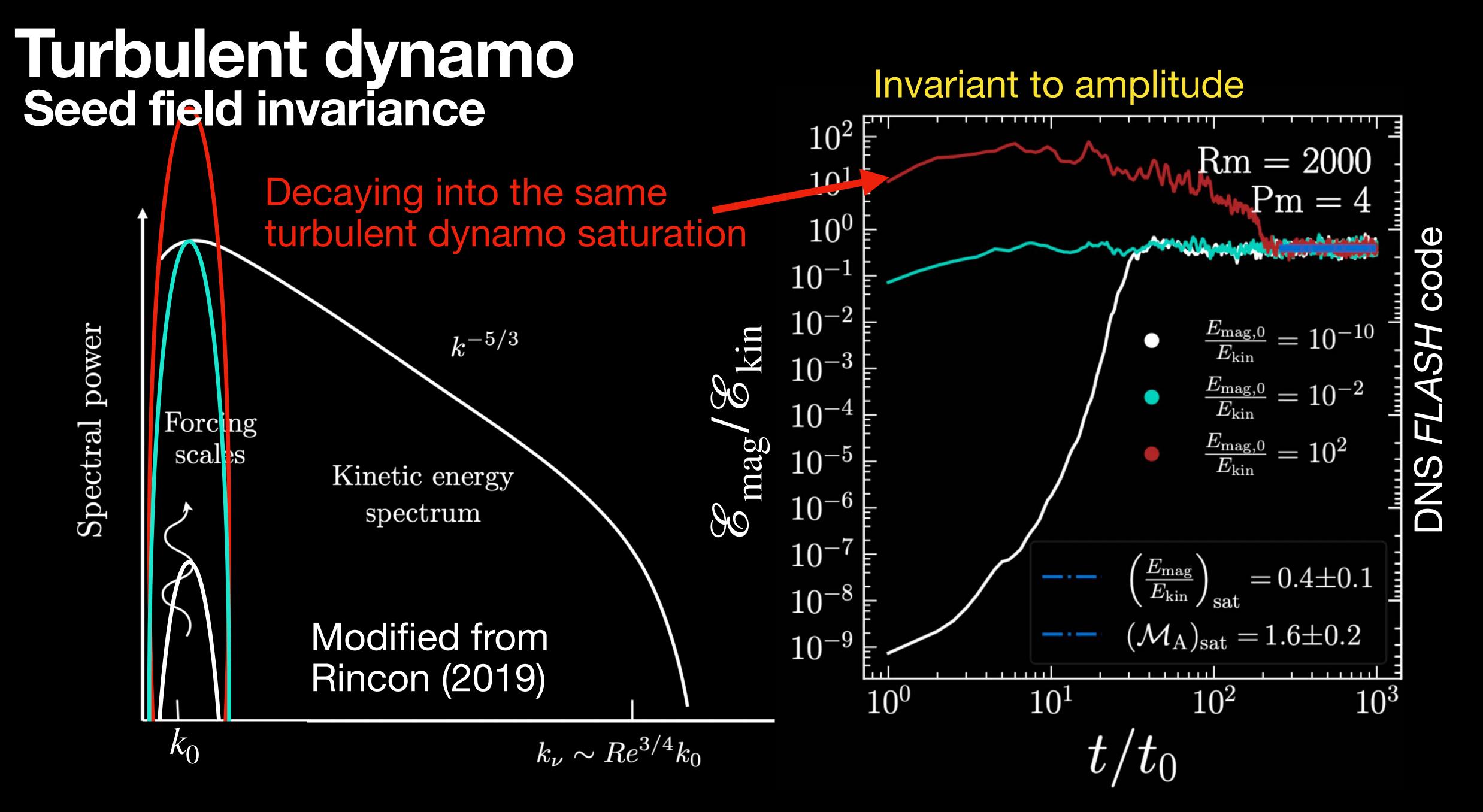
Do we need to worry about the seed field in turbulent dynamos?

i.e., does the initial state influence the final state?

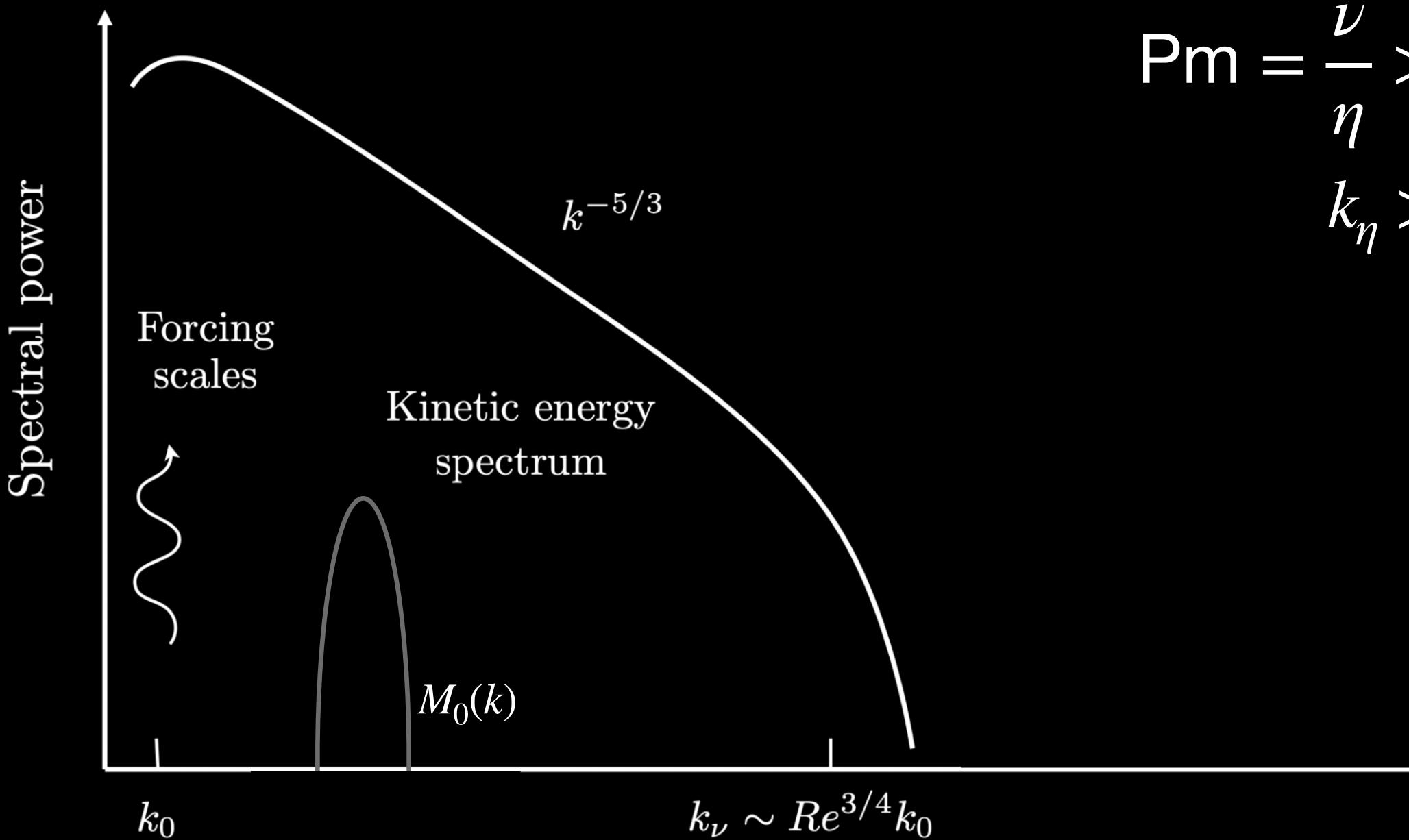
power

Spectral





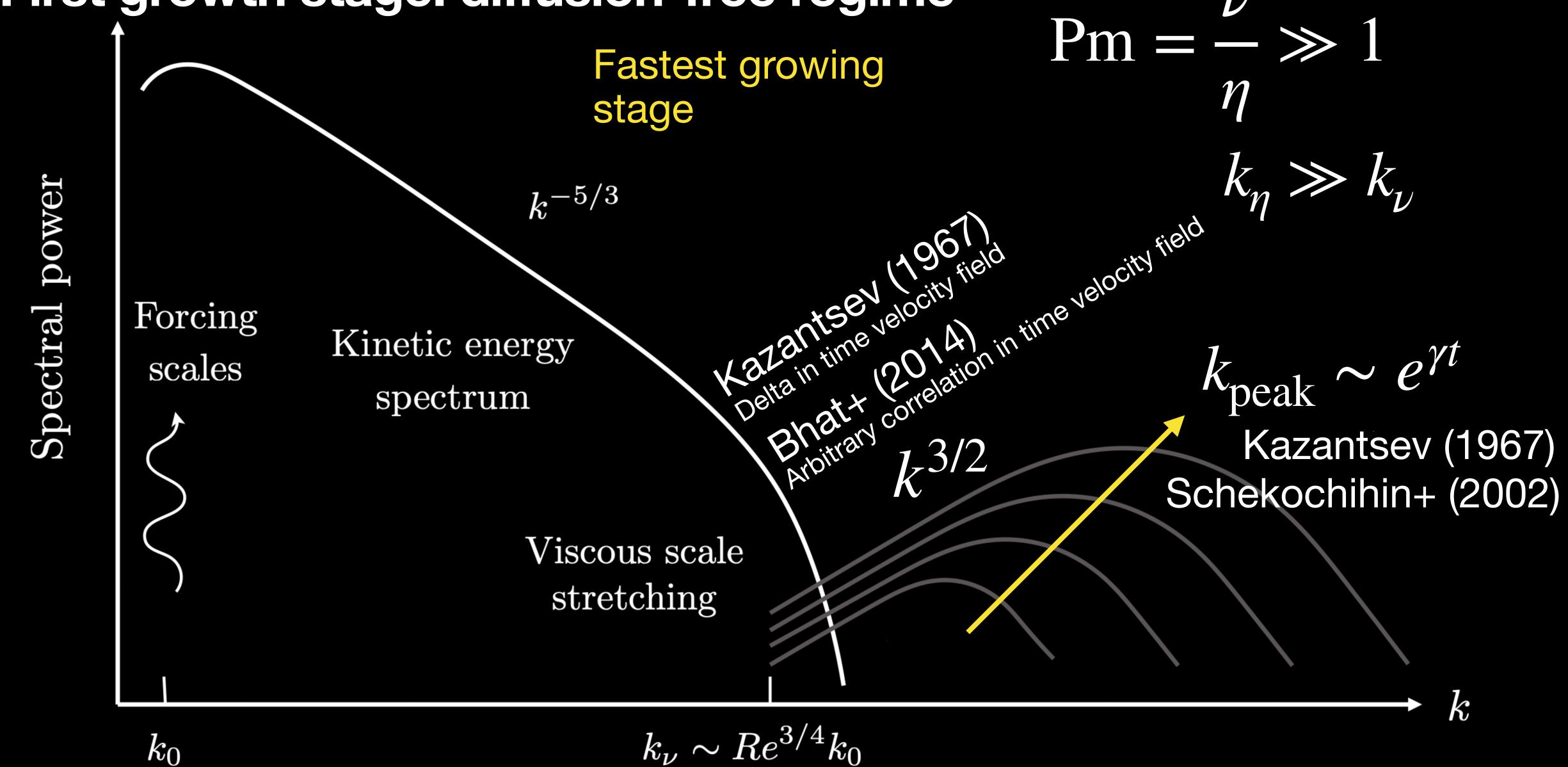
Beattie+ (2023). Growth or Decay I: Universality of the turbulent dynamo saturation



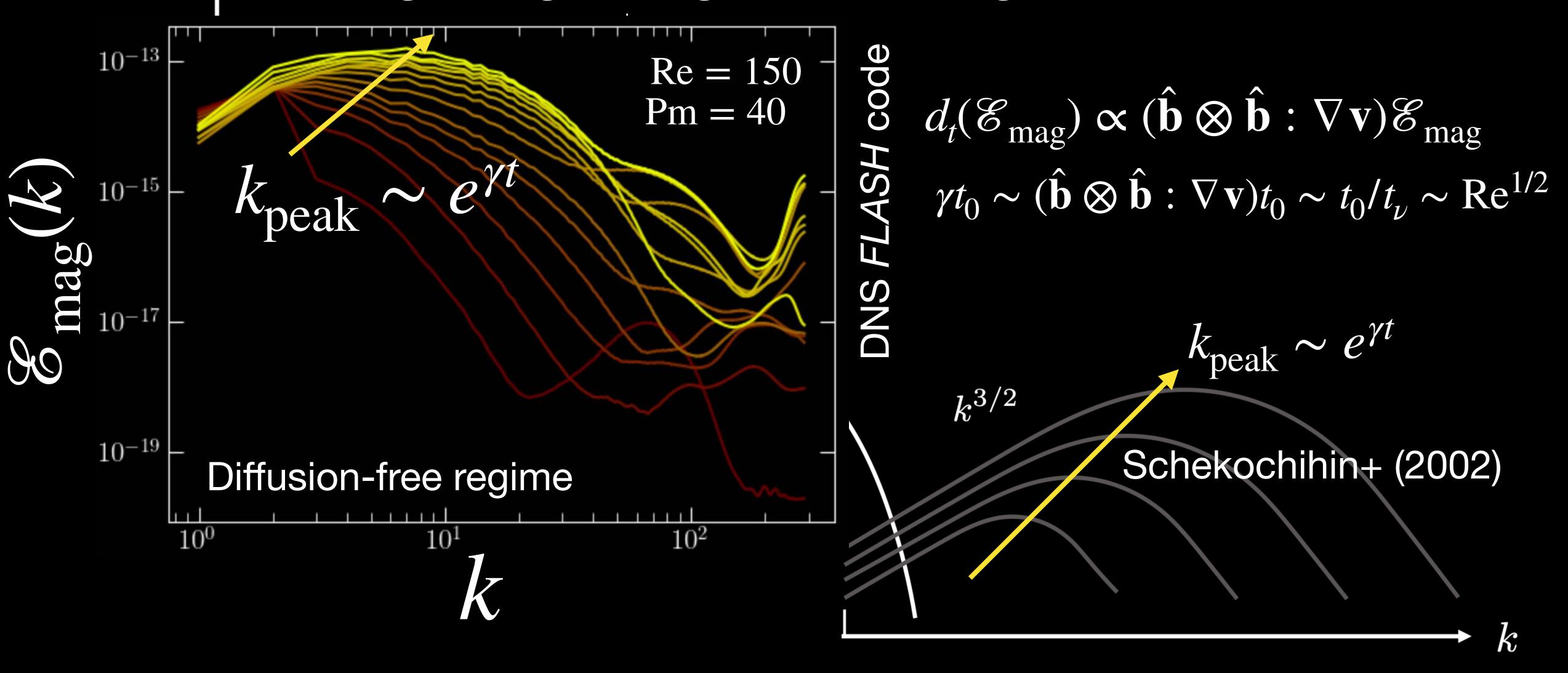
$$Pm = \frac{\nu}{-} \gg 1$$

$$k_{\eta} \gg k_{\nu}$$

Dynamo in k space First growth stage: diffusion-free regime



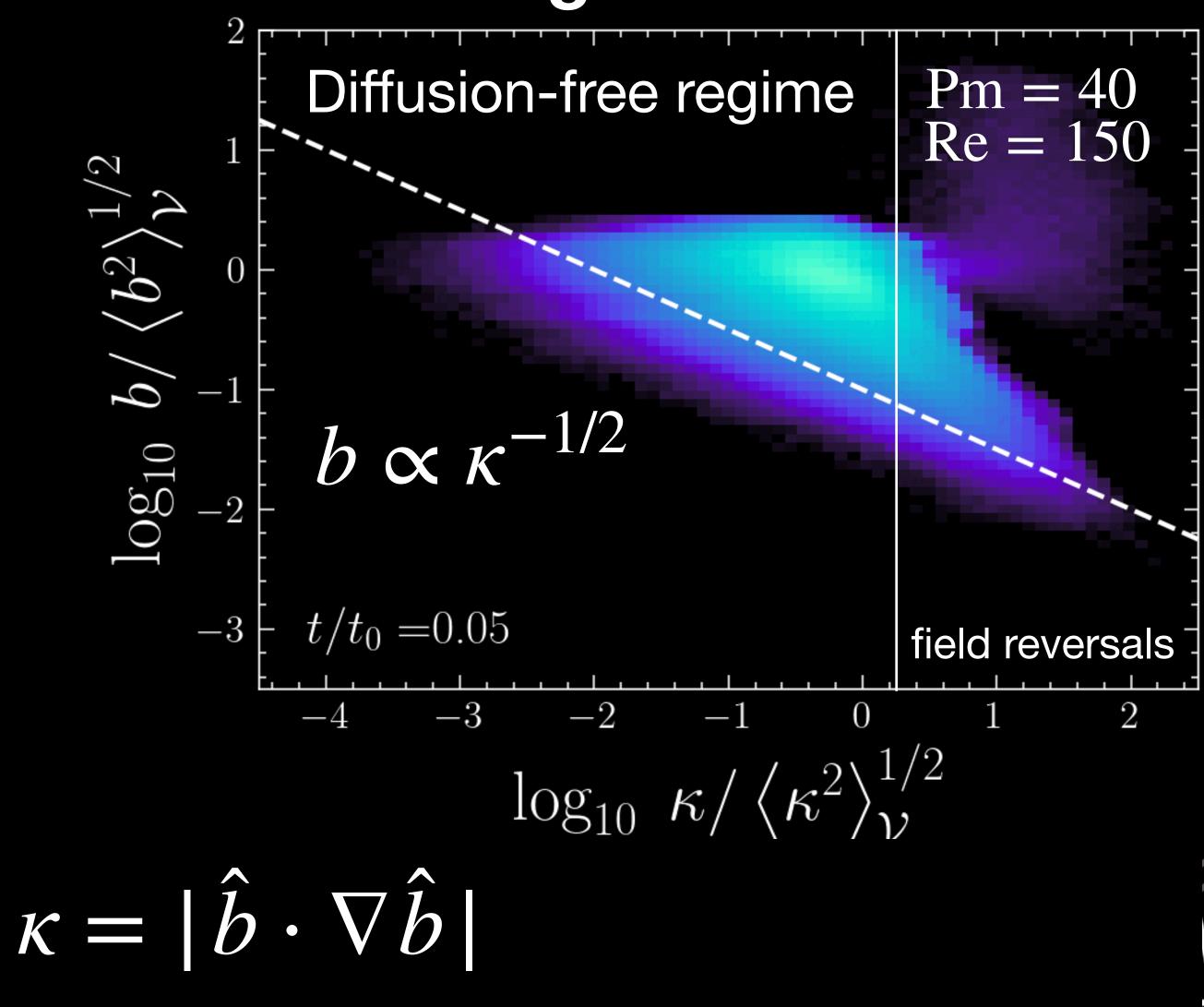
Turbulent dynamo Diffusion-free regime: growing + populating



Varma, Beattie, Kriel, Ripperda (in prep.)

Turbulent dynamo Diffusion-froe regimes: on

Diffusion-free regime: onset of folding



$$d_t(b\kappa^{\alpha}) = \left(\frac{1}{2} - \alpha\right)\hat{\mathbf{b}} \otimes \hat{\mathbf{b}} : \nabla \mathbf{v}$$
$$+\alpha\hat{\mathbf{n}} \otimes \hat{\mathbf{n}} : \nabla \mathbf{v}$$

$$\alpha = \frac{1}{2}$$
 special cases where stretching makes relation stationary

Schekochihin+ (2004)

 $k^{3/2}$ $k_{\text{peak}} \sim e^{\gamma t}$

Varma, Beattie, Kriel, Ripperda (in prep.)

Turbulent dynamo Second growth stage: kinematic regime

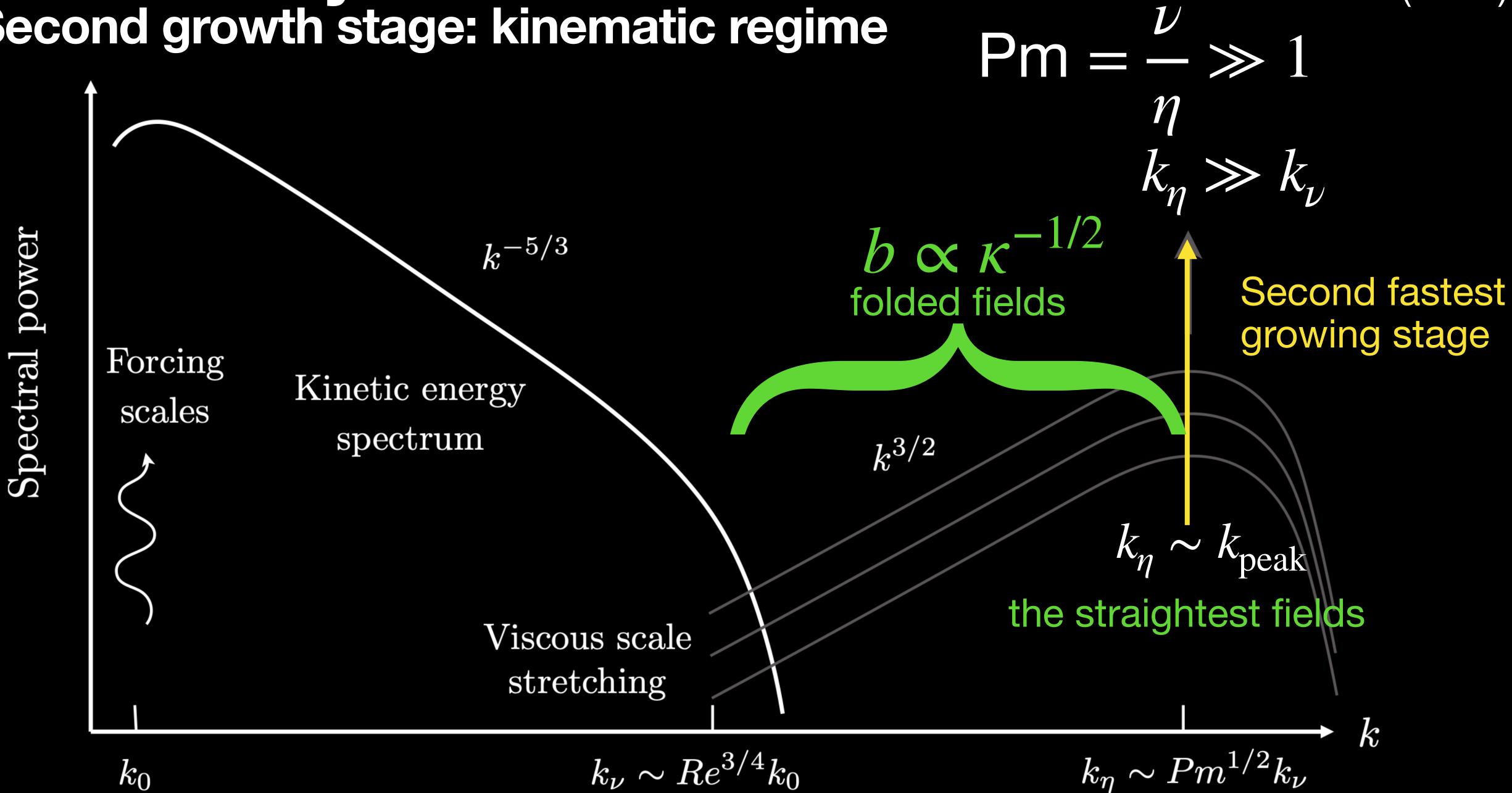
Modified from Rincon (2019)



Turbulent dynamo

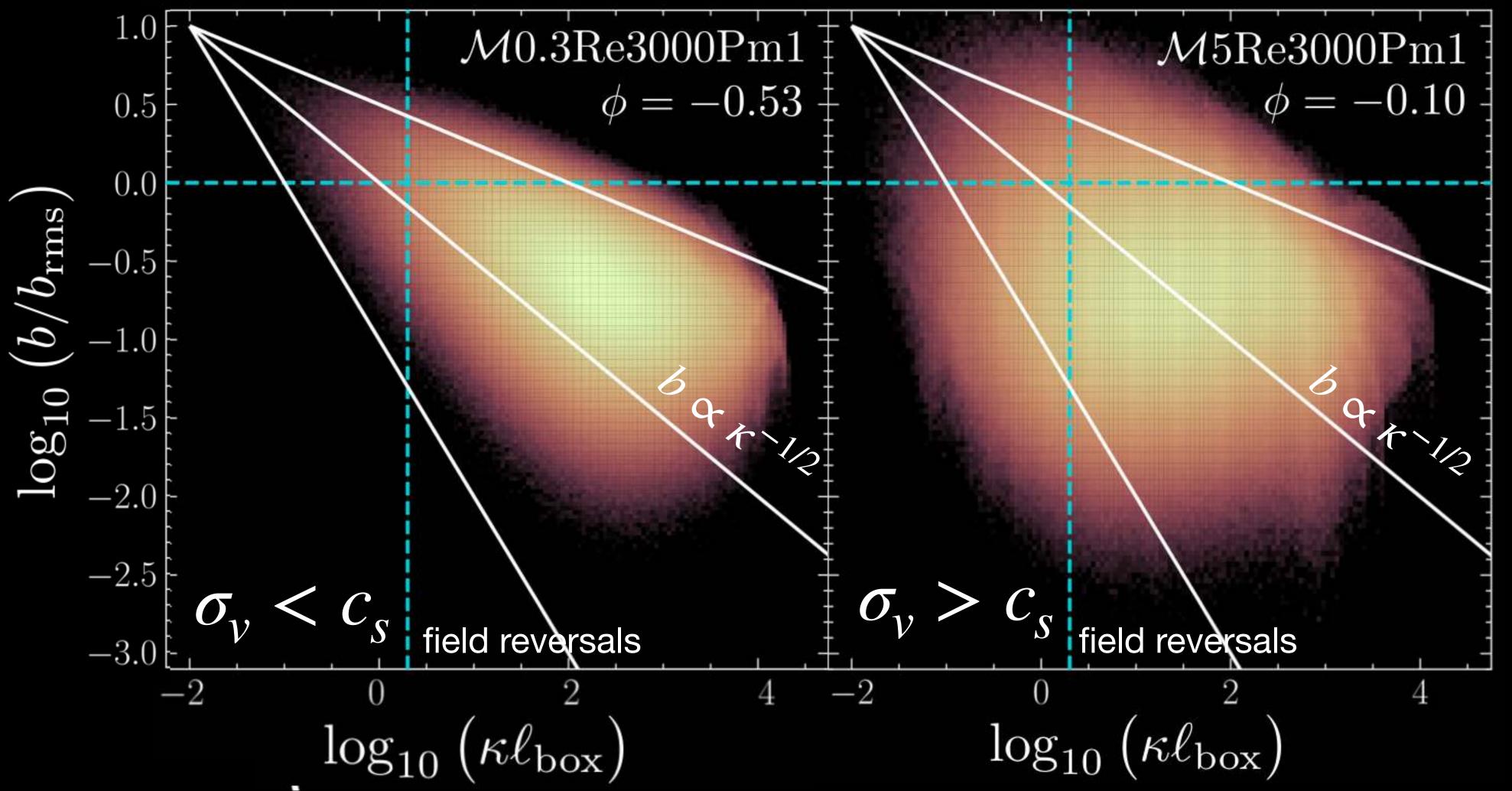
Modified from Rincon (2019)

Second growth stage: kinematic regime



Turbulent dynamo kinematic regime: folded fields

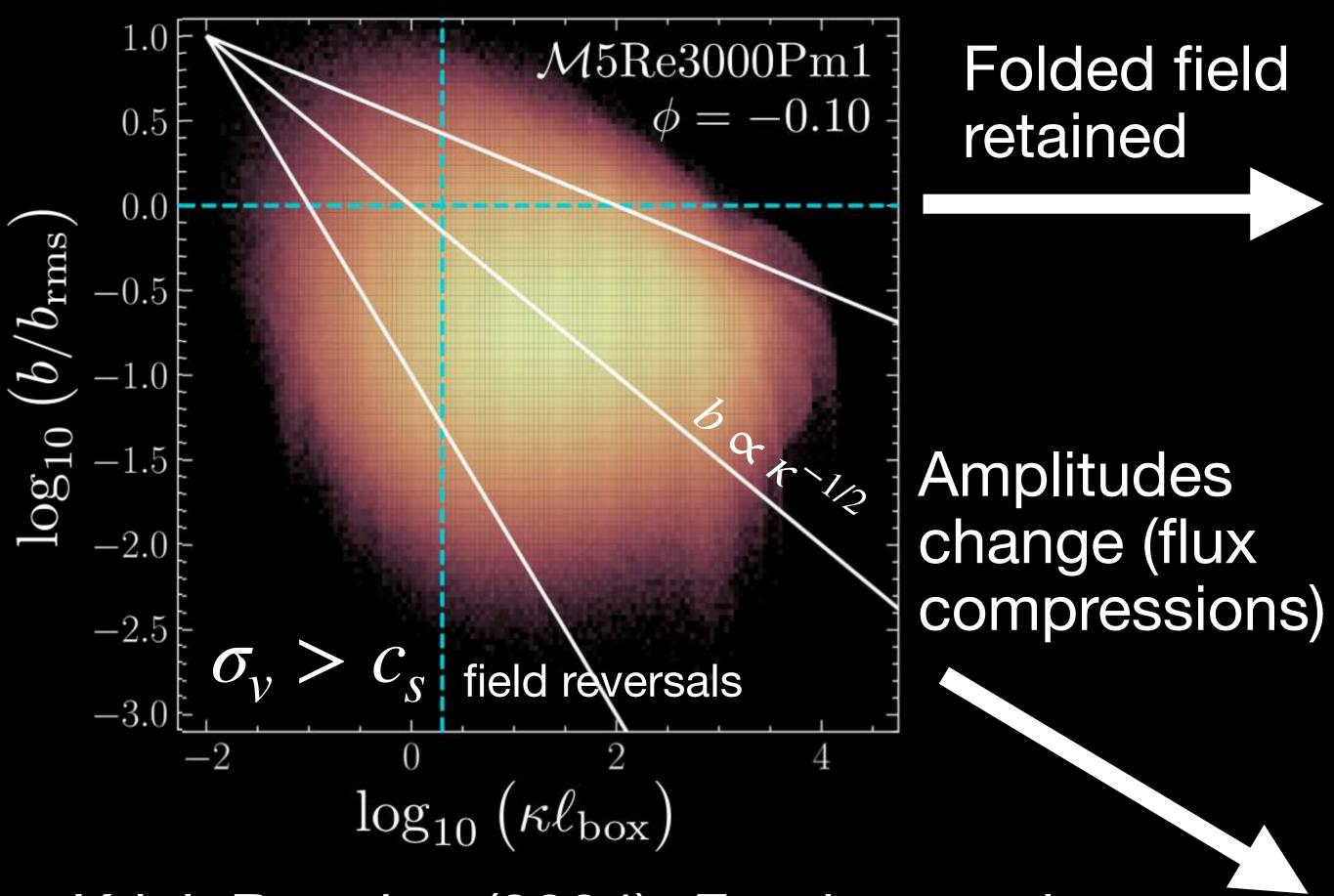
Neco Kriel Grad. Student (ANU)



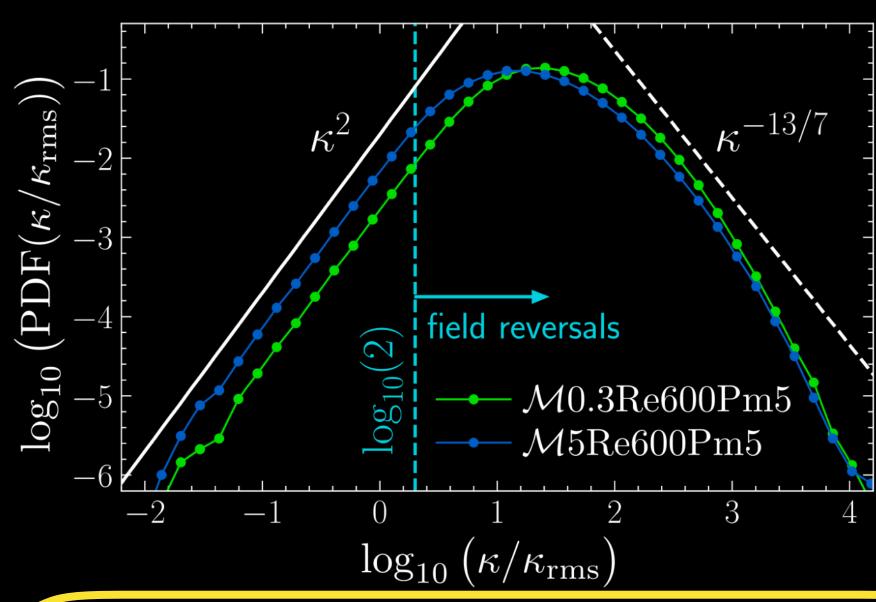
Kriel, Beattie+ (2024). Fundamental scales II: the kinematic stage of the supersonic dynamo

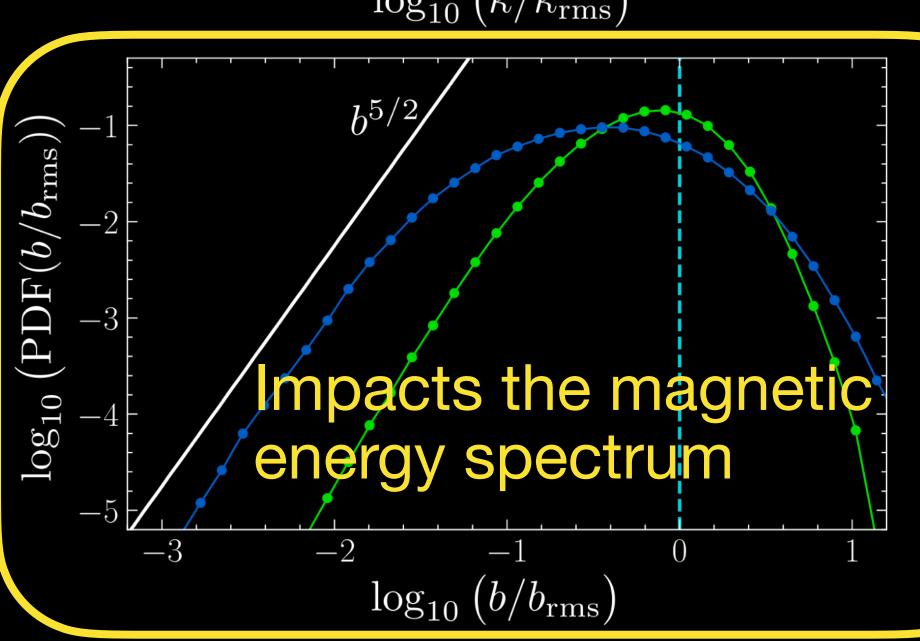
Turbulent dynamo kinematic regime: folded fields

Neco Kriel Grad. Student (ANU)



Kriel, Beattie+ (2024). Fundamental scales II: the kinematic stage of the supersonic dynamo





Turbulent dynamo kinematic regime: the peak scale

Modified from Rincon (2019)

kinematic regime: the peak scale
$$\Pr = \frac{\nu}{m} \gg 1$$

$$\frac{10^{-1}}{10^{-2}}$$

$$\frac{10^{-1}}{10^{-3}}$$

$$\frac{10^{-4}}{10^{-5}}$$

$$\frac{10^{-4}}{10$$

Turbulent dynamo kinematic regime: viscous scale

Neco Kriel Grad. Student (ANU)

Derived from $k^{-5/3}$ velocity spectrum

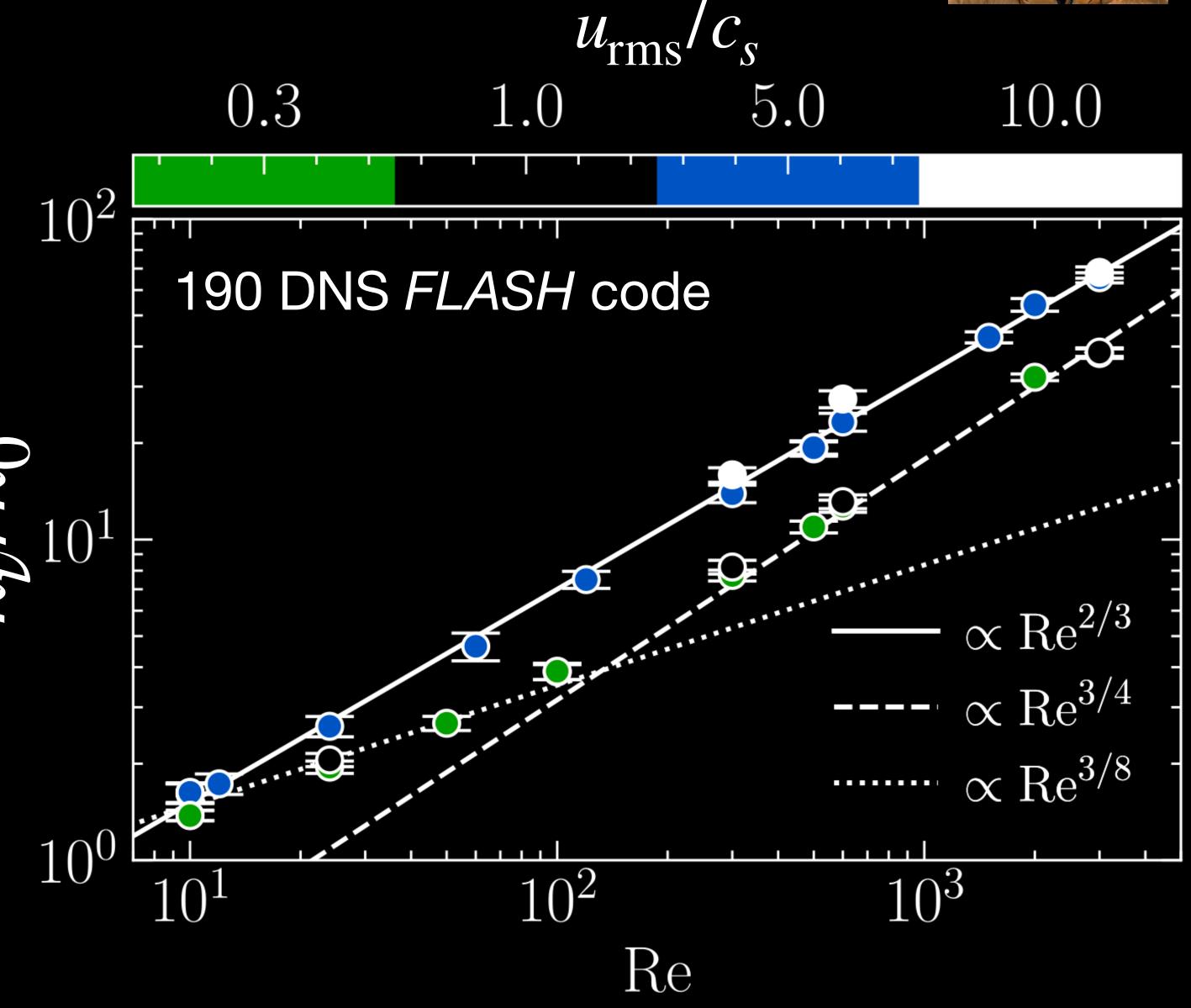
$$k_{\nu} \sim \mathrm{Re}^{3/4}$$
Kolmogorov41

Derived from k^{-2} velocity spectrum

$$k_{\nu} \sim \mathrm{Re}^{2/3}$$

Schober+(2015)

Kriel, Beattie+ (2024). Fundamental scales II: the kinematic stage of the supersonic dynamo



Turbulent dynamo kinematic regime: viscous scales

