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1 Boltzmann equation and the BGK collision operator

In its general, nonrelativistic form, the kinetic equation in (x,v) includes external forces and reads

∂f

∂t
+ v ·∇xf +

F (x, t)

m
·∇vf = C[f ], (1)

where ∇x and ∇v denote gradients in real space and velocity space, respectively, and F is the force
acting on a particle (e.g. gravity or the Lorentz force in a plasma). Throughout these notes we assume
a neutral, single-species gas, each particle with mass m, in an inertial frame with no external forces,
F = 0, so the streaming operator reduces to ∂tf + v ·∇xf . We replace the full collision operator by
the Bhatnagar-Gross-Krook (BGK) model,

C[f ] = −1

τ

(
f − f (0)

)
, (2)

which assumes that collisions drive the distribution toward a local Maxwellian f (0) on a characteristic
relaxation time τ . The BGK operator preserves mass, momentum, and energy while providing the
correct tensorial structure of viscous transport. The Boltzmann equation therefore becomes

∂f

∂t
+ v ·∇xf = −1

τ

(
f − f (0)

)
. (3)

The local equilibrium distribution f (0) is the Maxwell-Boltzmann distribution

f (0)(x,v, t) = n(x, t)

(
m

2πkBT (x, t)

)3/2

exp

[
−m|v − u(x, t)|2

2kBT (x, t)

]
, (4)

where

n(x, t), u(x, t), T (x, t) (5)

are the number density, bulk flow velocity, and temperature. These fluid fields are defined as velocity
moments of f ,

n ≡
∫
f d3v, nu ≡

∫
vf d3v,

3

2
nkBT ≡

∫
1

2
m|v − u|2f d3v. (6)

It is convenient to introduce the mass density ρ ≡ mn, the peculiar velocity c ≡ v − u, and kinetic
and internal energy,

1

2
ρu2 ≡

∫
1

2
mv2f d3v, ρe ≡

∫
1

2
mc2f d3v =

3

2
nkBT, (7)

for a monatomic gas. We also define the kinetic energy, pressure (stress) tensor and heat flux by

Pij ≡ m

∫
cicjf d3v, qi ≡

∫
1

2
mc2ci f d3v. (8)

For a local Maxwellian, Pij = p δij and qi = 0 with p = nkBT , which we will discuss in more detail
in the next subsection. A key property of the collision operator is the conservation of the collision
invariants ψ ∈ {1,v, 12mv

2}, ∫
ψC[f ] d3v = 0. (9)

In the BGK model this holds because f (0) is chosen to match the local density, momentum, and
energy of f , so that

∫
(f − f (0)) d3v = 0,

∫
v(f − f (0)) d3v = 0, and

∫
v2(f − f (0)) d3v = 0, i.e., it

disappears under the actions of the moments. Let us now derive the evolution equations for some of
the low-moment quantities from above.
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1.1 Zeroth-moment (mass conservation)

Integrating the Boltzmann equation over d3v gives

∂

∂t

∫
f d3v +∇x ·

∫
vf d3v =

∫
C[f ] d3v︸ ︷︷ ︸

=0

, (10)

or, using the moment definitions,

∂n

∂t
+∇ · (nu) = 0, (11)

where we can multiply by the species mass to get the standard continuity equation,

∂ρ

∂t
+∇ · (ρu) = 0. (12)

1.2 First-moment (momentum conservation)

Multiply the kinetic equation by mv and integrate,

∂

∂t

(
m

∫
vf d3v

)
+∇x ·

(
m

∫
v ⊗ vf d3v

)
= m

∫
vC[f ] d3v︸ ︷︷ ︸

=0

. (13)

where v ⊗ v = vivj . Let us note that

vivj = (ui + ci)(uj + cj) = uiuj + uicj + ujci + cicj , (14)

and hence the second integral becomes

m

∫
vivjf d3v = m

∫
(uiuj + uicj + ujci + cicj) f d3v. (15)

The first term yields,

m

∫
uiujf d3v = muiuj

∫
f d3v = ρuiuj = ρv ⊗ v, (16)

which is the classic quadratic nonlinearity (where turbulence comes from). The second and third term
yield,

m

∫
uicjf d3v = mui

∫
cjf d3v = mui

∫
(vj − uj)f d3v = mui

(∫
vjf d3v − uj

∫
f d3v

)
= 0,

(17)

which means the first-moment of the velocity fluctuations away from the bulk flow is zero. Hence the
only remaining term is

m

∫
cicjf d3v = Pij (18)

which is exactly the definition of the tensorial pressure P = Pij . Substituting this back into Equa-
tion (13)

∂ρu

∂t
+∇ · (ρu⊗ u+ P) = 0, (19)

or equivalently

∂u

∂t
+ u ·∇⊗ u = −1

ρ
∇ · P, (20)

after using Equation (12).
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1.3 Second-moment (energy conservation)

Next we multiply the kinetic equation by 1
2mv

2 and integrate,

∂

∂t

∫
1

2
mv2f d3v +∇x ·

∫
1

2
mv2v f d3v =

∫
1

2
mv2 C[f ] d3v︸ ︷︷ ︸

=0

. (21)

Decomposing v2 = (u + c)2 = uiui + 2uici + cici and using
∫
cif d3v = 0 on the uici terms, as we

showed previously, then

∂

∂t

∫
1

2
mv2f d3v =

∂

∂t

(
1

2
ρu2 + ρe

)
, (22)

is just the Eulerian derivative of the total energy. We expand the last integral in a similar fashion,∫
1

2
mv2v f d3v =

∫
1

2
m (uiui + 2uici + cici) vj f d3v =

1

2
ρu2u

+ ρe+

∫
1

2
mcicivjf d3v +mui

∫
civjf d3v. (23)

Similar to before, we must expand the tensor product for both integrals,

civj = ci(uj + cj) = ciuj + cicj . (24)

By substituting this into the first integral,∫
1

2
mcicivjf d3v =

∫
1

2
mci(ciuj + cicj)f d3v = ρeu+ q, (25)

by definition, where we remind the reader that the q is the heat-flux. The last integral is

mui

∫
civjf d3v = mui

∫
(ciuj + cicj)f d3v = mui

∫
cicjf d3v = uiPij = P · u. (26)

Putting this together gives the total energy equation,

∂

∂t

(
1

2
ρu2 + ρe

)
+∇ ·

[(
1

2
ρu2 + ρe

)
u+ P · u+ q

]
= 0. (27)

We have therefore showed that the zeroth, first, and second moment describe the fluid equations that
we use regularly to describe the world around us.

2 Chapman-Enskog expansion

The Boltzmann equation contains physics on two very different scales: fast microscopic velocity relax-
ation driven by collisions, and slow macroscopic evolution of density, velocity, and temperature. The
Chapman-Enskog method exploits this separation by expanding about local thermodynamic equilib-
rium in the small parameter

ϵ ≡ Kn =
λ

L
≪ 1, (28)

i.e., the Knudsen number, Kn, the ratio of the mean free path λ to a characteristic (usually system)
macroscopic length scale L. Naturally, for Kn ≪ 1 the plasma only has very small deviations away
from being in local thermal equilibrium. We therefore seek a solution to the BGK equation in which
all space-time dependence of f enters only through the hydrodynamic fields n(x, t),u(x, t), T (x, t),
and expand

f = f (0) + ϵf (1) + ϵ2f (2) + · · · . (29)

To maintain consistency between fast collisional relaxation, O(1/ϵ), and slow hydrodynamic evolution
O(ϵ(n)), we also introduce a multiscale time derivative

∂

∂t
=

∂

∂t(0)
+ ϵ

∂

∂t(1)
+ ϵ2

∂

∂t(2)
+ · · · . (30)

Next we equate powers of ϵ in the Boltzmann BGK equation to yield a hierarchy of equations of
different O(ϵ(n)).
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2.1 Zeroth-order: local equilibrium and Euler equations

We assume a hydrodynamic ordering in which macroscopic fields vary on timescales long compared to
the collision time (noting that v · ∇f (0) = O(1)), so that the leading distribution f (0) evolves only on
the slow (hydrodynamic) time. In the multiscale expansion this means

∂f (0)

∂t(0)
=

∂n

∂t(0)
=

∂u

∂t(0)
=

∂T

∂t(0)
= 0. (31)

Hence, at leading order O(ϵ0) we obtain

0 = −1

τ

(
f (0) − fM

)
, (32)

where fM is the Maxwell-Boltzmann distribution function. We already knew that the local thermal
equilibrium would result in

f (0) = fM (n,u, T ), (33)

i.e. the zeroth-order distribution is the local Maxwellian. Taking the zeroth, first, and second velocity
moments of the kinetic equation at this order recovers the Euler equations, as in the previous subsection.
However, what we show now is that to O(ε(0)) the pressure tensor reduces to

P
(0)
ij = p δij , p = nkBT, (34)

and the heat flux vanishes,

q(0) = 0, (35)

due to the parity and symmetry of fM (n,u, T ).

2.1.1 Isotropic pressure

To zeroth order we define the pressure,

P
(0)
ij ≡ m

∫
cicjf

(0) d3v = m

∫
cicjfM (c) d3c. (36)

where d3v = d3c. Note that fM (c) is rotationally symmetric, in that it only depends upon |c|. Does
the rotational symmetry extend itself to the entire integrand? Yes. Let us apply rotation matrices Rij

to each of the ci, such that c′i = Rijcj noting that d3c = det |Rij | d3c′ = d3c′,

P
(0)
ij ≡ m

∫
c′ic

′
jf

(0)(c′) d3c′ = mRimRjl

∫
cmclf

(0)(c) d3c = RimRjlP
(0)
ml , (37)

Since this holds for all rotations R, P
(0)
ij must satisfy P = RPRT for all R, which implies P

(0)
ij = Aδij .

Because

P
(0)
kk = m

∫
c2fM d3c = 2ρe = 3nkBT, (38)

A = P
(0)
kk /3 = nkBT = p, as expected for scalar pressure.

2.1.2 Vanishing heat flux

It is not hard to imagine that in local thermal equilibrium there is no heat flux. But let us show it
explicitly. By definition

q
(0)
i ≡

∫
1

2
mc2 ci f

(0) d3v =

∫
1

2
mc2 ci fM (c) d3c. (39)

Let us observe the integrand 1/2mc2 ci fM (c), where c2 is even in c, ci is odd in c and fM (c) is even
in c. This makes 1/2mc2 ci fM (c) and odd function in c, and since

∫
d3c is over all of R3, qi = 0.

Substituting these into (20) and (27) yields the inviscid Euler equations for n,u, T . These Euler
equations determine the zeroth-order time derivatives ∂t0n, ∂t0u, and ∂t0T that appear in f (1).

5



2.2 First-order expression for f (1)

At order O(ϵ1) the BGK equation yields

∂f (0)

∂t0
+ v ·∇xf

(0) = −1

τ
f (1). (40)

Thus

f (1) = −τ
(
∂f (0)

∂t0
+ v ·∇xf

(0)

)
= −τ

(
df (0)

dt(0)
+ c ·∇xf

(0)

)
. (41)

where d/ dt(0) ≡ ∂t0 + u · ∇x is the (zeroth–order) material derivative and noting that we pick up
c ·∇xfM by substituting v = u+c. Since f (0) = fM (n,u, T ) depends on space and time only through
the hydrodynamic fields, the derivatives in (41) are evaluated using the chain rule,

df (0)

dt(0)
=

dfM
dt(0)

=
∂fM
∂n

dn

dt(0)
+
∂fM
∂T

dT

dt(0)
+
∂fM
∂ui

dui
dt(0)

, (42)

The zeroth-order time derivatives in n, u, and T are determined by the Euler equations obtained in
the previous section, which I now go through below.

2.2.1 The zeroth-order material derivatives

As an explicit example, consider the zeroth-order density derivative appearing in (42). From the Euler
continuity equation (12),

∂n

∂t0
+∇ · (nu) = 0, (43)

so the material derivative is

dn

dt(0)
≡ ∂n

∂t0
+ u ·∇n = −n∇ · u. (44)

Thus all occurrences of dn/ dt(0) in (42) can be replaced by spatial gradients of the velocity field.
Similarly, the Euler momentum equation

ρ
du

dt(0)
= −∇p, gives

dui
dt(0)

= −1

ρ
∂ip, (45)

so time derivatives of the bulk velocity are replaced by pressure gradients. Finally, the zeroth-order
energy equation implies

dT

dt(0)
= −2

3
T ∇ · u, (46)

for a monatomic ideal gas. Hence, we can substitute these back into (42),

dfM
dt(0)

= −∂fM
∂n

n∇ · u− ∂fM
∂T

2

3
T ∇ · u− ∂fM

∂ui

1

ρ
∂ip, (47)

2.2.2 Partial Derivatives of the Maxwellian

We write the local Maxwellian as

fM (n,u, T ) = n

(
m

2πkBT

)3/2

exp

(
− mc2

2kBT

)
, c ≡ v − u. (48)

It is convenient to differentiate ln fM and then multiply by fM . Taking logarithms,

ln fM = lnn+
3

2
ln

(
m

2πkBT

)
− mc2

2kBT
. (49)
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Derivative with respect to density. Since fM is linear in n,

∂fM
∂n

=
fM
n
. (50)

Derivative with respect to temperature. Differentiating ln fM with respect to T (holding n and u fixed)
gives

∂ ln fM
∂T

= −3

2

1

T
+

mc2

2kBT 2
, hence

∂fM
∂T

= fM

(
−3

2

1

T
+

mc2

2kBT 2

)
. (51)

Derivative with respect to the bulk velocity. Using c2 = (v − u)2,

∂c2

∂ui
=

∂

∂ui
[(vj − uj)(vj − uj)] = −2ci, so

∂ ln fM
∂ui

= − ∂

∂ui

(
mc2

2kBT

)
=

m

kBT
ci, (52)

and therefore

∂fM
∂ui

=
m

kBT
cifM . (53)

Substituting these expressions into the chain rule (47) yields

dfM
dt(0)

= − m

kBT

(
c2

3
∇ · u+

ci
ρ
∂ip

)
fM , (54)

Gradient of the streaming term. Finally, the streaming contribution may be written in the same spirit,

c ·∇fM = fM c ·∇ ln fM . (55)

To proceed we compute ∇ ln fM explicitly. From

ln fM = lnn+
3

2
ln

(
m

2πkBT

)
− mc2

2kBT
, (56)

we obtain

∇ ln fM =
∇n

n
− 3

2

∇T

T
−∇

(
mc2

2kBT

)
=

∇n

n
− 3

2

∇T

T
− m

2kB
∇
(
c2

T

)
=

∇n

n
− 3

2

∇T

T
− m

2kB

(
∇c2

T
− c2

T 2
∇T

)
=

∇n

n
+

(
mc2

2kBT
− 3

2

)
∇T

T
− m

2kBT
∇c2. (57)

It remains to evaluate ∇c2. Since c = v − u(x, t) and v is an independent phase-space variable,

∂jci = −∂jui, (58)

and therefore

∂jc
2 = ∂j(cici) = 2ci∂jci = −2ci∂jui, (59)

Contracting (57) with c and using (59) gives

c ·∇ ln fM = cj∂j lnn+

(
mc2

2kBT
− 3

2

)
cj∂j lnT +

m

kBT
cicj ∂jui. (60)

Hence the streaming contribution can be written as

c ·∇fM = fM

[
cj∂j lnn+

(
mc2

2kBT
− 3

2

)
cj∂j lnT +

m

kBT
cicj ∂jui

]
. (61)

Putting it all back together. By substituting (54) and (61) into (41), the first-order distribution function
is then,

f (1) = −τ
(
dfM
dt(0)

+ c ·∇xf
(0)

)
, (62)

dfM
dt(0)

= − m

kBT

(
c2

3
∇ · u+

ci
ρ
∂ip

)
fM , (63)

c ·∇xfM = fM

[
cj∂j lnn+

(
mc2

2kBT
− 3

2

)
cj∂j lnT +

m

kBT
cicj ∂jui

]
, (64)

finally providing a close-form solution to f (1), based only on f (0) = fM .
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3 Moments of f (1): heat flux and pressure corrections

We now connect the Chapman-Enskog expansion

f = f (0) + ϵf (1) +O(ϵ2), (65)

directly to macroscopic transport by taking velocity moments of the distribution function. At zeroth
order f (0) = fM gives isotropic pressure and vanishing heat flux,

P
(0)
ij = m

∫
cicjfM d3c = p δij , q

(0)
i =

∫
1

2
mc2cifM d3c = 0, (66)

as we showed earlier. All irreversible transport therefore enters through the first-order correction f (1).

3.1 Relevant first-order fluxes

We define the first-order pressure tensor and heat flux as

P
(1)
ij ≡ m

∫
cicjf

(1) d3c, q
(1)
i ≡

∫
1

2
mc2cif

(1) d3c. (67)

The full stress tensor is then

Pij = P
(0)
ij + ϵP

(1)
ij +O(ϵ2). (68)

Further, we define the viscous stress as the deviation from the isotropic pressure,

πij ≡ Pij − p δij = ϵP
(1)
ij +O(ϵ2). (69)

3.2 Decomposition of f (1) by tensorial parity

The first-order correction obtained from (62) may be grouped by its velocity dependence into

f (1) = f
(1)
odd + f

(1)
bulk + f

(1)
shear, (70)

where,

• f
(1)
odd is odd in c (typically ∝ cj∂j lnn and cj∂j lnT ),

• f
(1)
bulk is isotropic in indices but even in c (typically ∝ c2∇ · u),

• f
(1)
shear is even and traceless-quadratic in c (typically ∝ cicj contracted with velocity gradients).

This decomposition is useful because different moments “select” terms with different symmetries from
(62). What this amounts to is organizing different macroscopic forces by how they act to restore each
fluid element to local thermal equilibrium.

3.3 First-order heat flux from odd terms of f (1) and Fourier’s law of heat
conduction

From the full first–order correction (62), the terms that are odd in c are those proportional to cj∂j lnn,
cj∂j lnT , and ci∂ip. Collecting them, the odd part of f (1) can be written as

f
(1)
odd = −τfM

[
cj∂j lnn+

(
mc2

2kBT
− 3

2

)
cj∂j lnT − m

kBT

ci
ρ
∂ip

]
. (71)

Substituting this into the definition of the heat flux gives

q
(1)
i = −τ

∫
1

2
mc2ci

[
cj∂j lnn+

(
mc2

2kBT
− 3

2

)
cj∂j lnT − m

kBT

cj
ρ
∂jp

]
fM d3c. (72)

8



By isotropy of the Maxwellian, integrals of the form
∫
cicjF (c

2)fM d3c reduce to∫
cicjF (c

2)fM d3c =
1

3
δij

∫
c2F (c2)fM d3c. (73)

Therefore,

q
(1)
i = −τ ∂i lnn

1

3

∫
1

2
mc4fM d3c− τ ∂i lnT

1

3

∫
1

2
m

(
mc2

2kBT
− 3

2

)
c4fM d3c

+ τ ∂ip
1

3

m

kBT

1

ρ

∫
1

2
mc4fM d3c. (74)

The fourth moment of fM in c is (which can be shown by direct integration),∫
c4fM d3c = 15n

(
kBT

m

)2

, (75)

so ∫
1

2
mc4fM d3c =

15

2
n
(kBT )

2

m
. (76)

Using p = nkBT and ρ = mn, the density-gradient and pressure-gradient terms are then

−τ ∂i lnn
1

3

∫
1

2
mc4fM d3c = −τ ∂i lnn

1

3

15

2
n
(kBT )

2

m
= −τ∂in

5

2

(kBT )
2

m
(77)

and

τ ∂ip
1

3

m

kBT

1

ρ

∫
1

2
mc4fM d3c =τ ∂ip

1

kBT

5

2

(kBT )
2

m
= τ ∂in

5

2

(kBT )
2

m
+ τ n∂i lnT

5

2

(kBT )
2

m
(78)

and hence the first term of the pressure-gradient cancels exactly with the density gradient. This leaves

only the temperature gradient terms in q
(1)
i ,

q
(1)
i = τ n∂i lnT

5

2

(kBT )
2

m
− τ ∂i lnT

1

3

∫
1

2
m

(
mc2

2kBT
− 3

2

)
c4fM d3c. (79)

Let us now break the final integral into two. Starting with the simplest term is the −3/2 term in the
final integral, resembling again the fourth moment of fM , which we already calculated above. Hence,

−τ ∂i lnT
1

3

∫
1

2
m

(
−3

2

)
c4fM d3c. = τ∂i lnT

1

2

∫
1

2
mc4fMd

3c = τn∂i lnT
15

4

(kBT )
2

m
, (80)

hence,

q
(1)
i = τ n∂i lnT

25

4

(kBT )
2

m
− τ ∂i lnT

m2

12kBT

∫
c6fM d3c, (81)

leaving us with a final sixth moment of fM to calculate. One can show that,∫
c6fM d3c = 105n

(
kBT

m

)3

, (82)

and so

−τ ∂i lnT
m2

12kBT

∫
c6fM d3c = −τ ∂i lnT

m2

12kBT
105n

(
kBT

m

)3

= −τn ∂i lnT
105

12

(kBT )
2

m
.

(83)

This gives,

q
(1)
i = −τ n ∂i lnT

5

2

(kBT )
2

m
= −τ 5

2

nk2BT

m
∂iT = −τp 5

2

kB
m
∂iT, (84)

i.e.,

q(1) = −κ∇T, κ =
5

2

kB
m
pτ. (85)

Thus the odd part of the first order Chapman-Enskog correction produces Fourier’s law of heat con-
duction, with thermal conductivity proportional to the collisional relaxation time τ .
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3.4 Pressure corrections and bulk viscosity from the isotropic, even terms
of f (1)

The first-order pressure tensor is

P
(1)
ij = m

∫
cicjf

(1) d3c. (86)

Since cicj is even in c, any odd part of f (1) (the terms responsible for q(1)) integrates to zero by parity.

Thus only the even-in-c pieces of f (1) contribute to P
(1)
ij . From the full first-order correction (62), the

even contributions that are isotropic in velocity space are those proportional to c2 (rather than cicj),
and they multiply the scalar compression ∇ · u. Denote this part by

f
(1)
bulk = −τfM

m

kBT

(
c2

3
∇ · u

)
, (87)

where the factor 1/3 is convenient because c2/3 is the isotropic part of the quadratic tensor cicj .

Inserting (87) into the definition of P
(1)
ij :

P
(1)
ij, bulk = m

∫
cicjf

(1)
bulk d3c = −τ∇ · u m2

3kBT

∫
cicjc

2fM d3c. (88)

By isotropy of the Maxwellian, the tensor integral must be proportional to δij :∫
cicjc

2fM d3c =
1

3
δij

∫
c4fM d3c. (89)

Using the fourth moment already computed in the heat-flux section,∫
c4fM d3c = 15n

(
kBT

m

)2

, (90)

we obtain ∫
cicjc

2fM d3c =
1

3
δij 15n

(
kBT

m

)2

= 5n

(
kBT

m

)2

δij . (91)

Substituting back into (88) gives

P
(1)
ij, bulk = −τ∇ · u m2

3kBT
5n

(
kBT

m

)2

δij = −τ∇ · u 5

3
nkBT δij . (92)

Since p = nkBT , this can be written compactly as

P
(1)
ij, bulk = −ζ (∇ · u) δij , ζ ≡ 5

3
pτ. (93)

Interpretation (bulk viscosity and equation of state). Equation (93) is an isotropic (pure-
trace) correction to the pressure tensor. It therefore does not contribute to shear stresses; rather,
it modifies the relation between isotropic stress and the local compression ∇ · u and is naturally
interpreted as a bulk-viscosity-type term. A caution is warranted. For a monatomic ideal gas with
only elastic binary collisions, the physical bulk viscosity vanishes in the full Boltzmann theory. In the
Chapman-Enskog expansion this occurs because any isotropic O(ϵ) correction to the pressure tensor
corresponds to a change in the local energy density and can therefore be absorbed into a redefinition
of the temperature. As a result, only the traceless (deviatoric) part of the stress tensor represents a
true first-order dissipative effect.
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3.5 Shear viscosity from the traceless, even terms of f (1).

We now compute the deviatoric (shear) stress arising from the traceless, even terms in f (1). Since the
pressure tensor is even in c,

P
(1)
ij = m

∫
cicjf

(1) d3c, (94)

the odd part of f (1) does not contribute. Moreover, we have already isolated the isotropic, components
are proportional to ∇ ·u (the bulk/trace correction). We therefore focus only on the traceless part of
the velocity gradient, introducing the standard decomposition

∂jui = Sij +Ωij +
1

3
δij∇ · u, (95)

with

Sij =
1

2
(∂iuj + ∂jui)−

1

3
δij∇ · u, Ωij =

1

2
(∂jui − ∂iuj), (96)

so that Sii = 0. In the Chapman-Enskog correction, the part that produces shear stress must be (i)
even in c and (ii) traceless in the indices contracted with Pij . This therefore corresponds to only the
cicj∂jui term in (54), which we can write in traceless form

(
cicj − 1

3c
2δij

)
and the rate-of-strain Sij ,

giving

f
(1)
shear = −τfM

m

kBT

(
cicj −

1

3
c2δij

)
Sij . (97)

(The antisymmetric part Ωij cannot contribute because it contracts to zero with the symmetric tensor
cicj .) The corresponding first-order pressure correction is

P
(1)
ij, shear = m

∫
cicjf

(1)
shear d

3c = −τ m
2

kBT
Skℓ

∫
cicj

(
ckcℓ −

1

3
c2δkℓ

)
fM d3c. (98)

By isotropy of the Maxwellian, the fourth moment in c has the general form∫
cicjckcℓfM d3c = A (δijδkℓ + δikδjℓ + δiℓδjk) , (99)

where A is fixed by contracting indices:∫
c4fM d3c =

∫
cicicjcjfM d3c = 15A ⇒ A =

1

15

∫
c4fM d3c. (100)

Using the previously evaluated fM moment in c∫
c4fM d3c = 15n

(
kBT

m

)2

, (101)

we obtain A = n
(
kBT
m

)2
. Substituting into (98) and using Skk = 0 yields∫

cicj

(
ckcℓ −

1

3
c2δkℓ

)
fM d3c = A (δikδjℓ + δiℓδjk) , (102)

⇒ P
(1)
ij, shear = −τ m

2

kBT
A (Sij + Sji) = −2τ

m2

kBT
ASij . (103)

Finally, since A = n
(
kBT
m

)2
and p = nkBT , we find

P
(1)
ij, shear = −2pτ Sij . (104)

Thus the deviatoric stress tensor, πij , is

πij ≡ Pij − pδij = −2µSij , µ = pτ, (105)

which is the Newtonian shear stress with dynamic viscosity coefficient µ = pτ , derived directly from
the Chapman-Enskog expansion of the Boltzmann equation with the BGK collision operator.
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