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1 Boltzmann equation and the BGK collision operator
In its general, nonrelativistic form, the kinetic equation in (x,v) includes external forces and reads

o 4
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where V., and V, denote gradients in real space and velocity space, respectively, and F' is the force

acting on a particle (e.g. gravity or the Lorentz force in a plasma). Throughout these notes we assume

a neutral, single-species gas, each particle with mass m, in an inertial frame with no external forces,

F = 0, so the streaming operator reduces to 0;f + v - V. f. We replace the full collision operator by

the Bhatnagar-Gross-Krook (BGK) model,

alfl == (7 - 1), )

which assumes that collisions drive the distribution toward a local Maxwellian f() on a characteristic
relaxation time 7. The BGK operator preserves mass, momentum, and energy while providing the
correct tensorial structure of viscous transport. The Boltzmann equation therefore becomes

S Vaf === (£ = 0). (3)
The local equilibrium distribution f(%) is the Maxwell-Boltzmann distribution
3/2 2
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are the number density, bulk flow velocity, and temperature. These fluid fields are defined as velocity
moments of f,

. . 1
nz/f o, nuz/’uf P, gnkBTE/§m|'u_u|2f Po. (6)

It is convenient to introduce the mass density p = mn, the peculiar velocity ¢ = v — u, and kinetic
and internal energy,

1 3
mov? f 3o, pe = / imCQf o = inkBT, (7)
for a monatomic gas. We also define the kinetic energy, pressure (stress) tensor and heat flux by
1
P = m/cicjf 3o, q = /§mczcif d3v. (8)
For a local Maxwellian, P;; = pd;; and ¢; = 0 with p = nkgT, which we will discuss in more detail

in the next subsection. A key property of the collision operator is the conservation of the collision
invariants ¢ € {1, v, %mv2}7

/ yOlf] do = 0. (9)

In the BGK model this holds because f(® is chosen to match the local density, momentum, and
energy of f, so that [(f — (@) d®v =0, [v(f — f©) d® =0, and [v?(f — f©) d®v =0, ie., it
disappears under the actions of the moments. Let us now derive the evolution equations for some of
the low-moment quantities from above.



1.1 Zeroth-moment (mass conservation)

Integrating the Boltzmann equation over d®v gives

%/fd3v+vm~/vfd3v=/c[f] d*v,

=0
or, using the moment definitions,

on

where we can multiply by the species mass to get the standard continuity equation,

dp B
E‘FV-(/)’LL)—O.

1.2 First-moment (momentum conservation)

Multiply the kinetic equation by mwv and integrate,

i f o )+ 9 »)- 3
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where v ® v = v;v;. Let us note that
ViV = (ul -+ Ci)(Uj -+ Cj) = UUy + uicj -+ UjCi -+ CiCyj,
and hence the second integral becomes
m/vivjf d3’U = m/ (uiuj + U;Cj + U;C; + Cl'Cj) f dB’U.

The first term yields,

m/uiujf 3o = MU;U; /f o = pUU; = pU DV,

(10)

(13)

(16)

which is the classic quadratic nonlinearity (where turbulence comes from). The second and third term

yield,

m/uicjfdgv:mui/cjfds'u:mui/(vj—uj)fdsvzmui </Ujfd3’l}—Uj/fd3U> =0,

(17)

which means the first-moment of the velocity fluctuations away from the bulk flow is zero. Hence the

only remaining term is

’ITL/Ciij d3v = Pij

(18)

which is exactly the definition of the tensorial pressure P = F;;. Substituting this back into Equa-

tion (13)
Jpu
L+V-(pu®u+1?’) =0,
ot

or equivalently
ou

1
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after using Equation (12).
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1.3 Second-moment (energy conservation)

Next we multiply the kinetic equation by %va and integrate,

DL s Lo g @ = [ Lunecy) o
at/2mvfd'v—|—V;c /vavfd'v— 5 MY Clf] d’v. (21)

=0

Decomposing v2 = (u+ 0)2 = u;u; + 2u;¢; 4+ c;c; and using fcif d*v = 0 on the u;¢c; terms, as we
showed previously, then

5 | 3™ fdPv = iy <2pu + pe |, (22)

is just the Eulerian derivative of the total energy. We expand the last integral in a similar fashion,

1 1 1
/Emvzvf B = /im (wiw; + 2uic; + cici) vy f P = ipu2u

1
+ pe + / imcicivjf 3o + mui/civjf d3v. (23)
Similar to before, we must expand the tensor product for both integrals,
civj = ci(u; + ¢5) = ciuj + ¢icj. (24)

By substituting this into the first integral,

/%mcicivjf o = /%mci(ciuj + cicj) f d3v = peu + q, (25)
by definition, where we remind the reader that the q is the heat-flux. The last integral is
mui/civjf &Bv = mu; /(ciuj +cic)f B = mui/cicjf o = w Py =P-u. (26)
Putting this together gives the total energy equation,
gt(;pu2+pe>+V~K;puz—kpe)u—kp-u—&-q} =0. (27)

We have therefore showed that the zeroth, first, and second moment describe the fluid equations that
we use regularly to describe the world around us.

2 Chapman-Enskog expansion

The Boltzmann equation contains physics on two very different scales: fast microscopic velocity relax-
ation driven by collisions, and slow macroscopic evolution of density, velocity, and temperature. The
Chapman-Enskog method exploits this separation by expanding about local thermodynamic equilib-
rium in the small parameter

A
EEKniz<<1, (28)

i.e., the Knudsen number, Kn, the ratio of the mean free path A to a characteristic (usually system)
macroscopic length scale L. Naturally, for Kn < 1 the plasma only has very small deviations away
from being in local thermal equilibrium. We therefore seek a solution to the BGK equation in which
all space-time dependence of f enters only through the hydrodynamic fields n(z,t), u(x,t), T (x,t),
and expand

=70 pefM 2@y, (29)
To maintain consistency between fast collisional relaxation, O(1/¢), and slow hydrodynamic evolution
O(e™), we also introduce a multiscale time derivative
o 0 0 5 0
ot~ a0 o T @
Next we equate powers of € in the Boltzmann BGK equation to yield a hierarchy of equations of
different O(e(™).

T (30)



2.1 Zeroth-order: local equilibrium and Euler equations

We assume a hydrodynamic ordering in which macroscopic fields vary on timescales long compared to
the collision time (noting that v - Vf(©) = O(1)), so that the leading distribution f(©) evolves only on
the slow (hydrodynamic) time. In the multiscale expansion this means

af®  on  du _ OT
ot — 910 ~ 51 — 9¢0)

Hence, at leading order O(€") we obtain
1
0=—- (f(o)—fM), (32)

where fjs is the Maxwell-Boltzmann distribution function. We already knew that the local thermal
equilibrium would result in

= 0. (31)

FO = fa(n,u,T), (33)

i.e. the zeroth-order distribution is the local Maxwellian. Taking the zeroth, first, and second velocity
moments of the kinetic equation at this order recovers the Euler equations, as in the previous subsection.
However, what we show now is that to O(¢(?)) the pressure tensor reduces to

(O) = pézga b= nkBT7 (34)
and the heat flux vanishes,
q =0, (35)

due to the parity and symmetry of fys(n,u,T).

2.1.1 Isotropic pressure

To zeroth order we define the pressure,
PP =m / cic; fO v =m / cicjful(e) de. (36)

where d®v = d®c. Note that fy(c) is rotationally symmetric, in that it only depends upon |¢|. Does
the rotational symmetry extend itself to the entire integrand? Yes. Let us apply rotation matrices R;;
to each of the ¢;, such that ¢, = R;jc; noting that d3c = det |Ri;| d3¢ = d3¢,

PO =m / A fO() d*¢’ = mRyn Rj / emerfO(c) d®e = Rim R P, (37)

Since this holds for all rotations R, P( ) must satisfy P = RPRT for all R, which implies P = Ady;.
Because

0) m/ A e = 2pe = 3nkpT, (38)
A= Péz)/ii =nkpT = p, as expected for scalar pressure.

2.1.2 Vanishing heat flux

It is not hard to imagine that in local thermal equilibrium there is no heat flux. But let us show it
explicitly. By definition

i = [ Gme e fO dto= [ Jme e fule) de (39)

Let us observe the mtegrand 1/2mc? ¢; far(c), where ¢? is even in ¢, ¢; is odd in ¢ and fM( ) is even
in ¢. This makes 1/2mc?¢; far(c) and odd function in e, and since fd c is over all of R3, ¢; = 0.
Substituting these into (20) and (27) yields the inviscid Euler equations for n,w,T. These Euler
equations determine the zeroth-order time derivatives 0y, n, 0y, u, and 0,1 that appear in f @,



2.2 First-order expression for ()
At order O(e!) the BGK equation yields

o1 1
gto +v- V0= *;f(l)- (40)
Thus
(0) df©
f=_7 (aaft +v- wa(o)) =T (d{(o) +c- wa(0)> . (41)
0

where d/dt(®) = 9, + u - V is the (zeroth-order) material derivative and noting that we pick up
¢V fur by substituting v = u+¢. Since f(©) = fas(n, u, T) depends on space and time only through
the hydrodynamic fields, the derivatives in (41) are evaluated using the chain rule,

df®  dfy  Ofu dn  Ofy AT Ofm duy
dt® T @t©® T gn at© T a7 dt© T du; dt©”

(42)

The zeroth-order time derivatives in n, w, and T are determined by the Euler equations obtained in
the previous section, which I now go through below.
2.2.1 The zeroth-order material derivatives

As an explicit example, consider the zeroth-order density derivative appearing in (42). From the Euler
continuity equation (12),

on

V- =0 43
Bt + (nu) , (43)
so the material derivative is
dn on

Thus all occurrences of dn/ dt(©® in (42) can be replaced by spatial gradients of the velocity field.
Similarly, the Euler momentum equation

du . du; 1
P @ — —Vp, gives = = —;aip, (45)

dt©®

so time derivatives of the bulk velocity are replaced by pressure gradients. Finally, the zeroth-order
energy equation implies
dT 2

for a monatomic ideal gas. Hence, we can substitute these back into (42),

dfm Ofu Ofm 2 Ofu 1
__9M g YIM A, 2o
at© on "YU G 3l VT Gy 0P

2.2.2 Partial Derivatives of the Maxwellian

We write the local Maxwellian as

3/2 2
m mc
f]\/[(n, u, T) =N (W) exp (_M) N C=7T—1U. (48)

It is convenient to differentiate In fj; and then multiply by fa;. Taking logarithms,

3 m mc?
In far =1 21 _ . 49
nfu=Innt g n(%kﬂ) UepT (49)



Derivative with respect to density. Since fjs is linear in n,

Ofu  fu
= (50)

Derivative with respect to temperature. Differentiating In fa; with respect to T (holding n and w fixed)
gives

dln fyr 3 1 mc? fM 3 1 mc?
—_2- h — = 51
or 2G%epT? O = Ju 2%pT? (51)
Derivative with respect to the bulk velocity. Using ¢* = ('u — u)27
ac? 0 Oln fpr 0 mc? m
= [(v; — )y — ;)] = 2, = () = e (52
aui 8ul [(UJ UJ)(U] u])] ¢ 50 6ui 8ul <2kBT) k TC (5 )
and therefore
ofm m
= 53
du; ~ RpT M (53)
Substituting these expressions into the chain rule (47) yields
dfm m [ Ci
—-— =—-——|=V_ —0; 54
Gradient of the streaming term. Finally, the streaming contribution may be written in the same spirit,
c-Viu=fuc-Vin fu. (55)
To proceed we compute V In f)s explicitly. From
3 m mc?
1 =1 =1 — 56
nfar=lnn+ 3 n(zmg) UepT’ (56)
we obtain
Vinfy = Y0 3VT G me \_Vn 3VT  mglc
M= 2T %pT) n 2T 2kp \T
Vn 3VT m (V2 2 Vn mc? 3\ VT
=" - - (| VT)|=— = 2. (57
n 2T 2kp < T T2V ) +(2kBT 2) T 2kBTV (57)
It remains to evaluate Vc2. Since ¢ = v — u(x,t) and v is an independent phase-space variable,
8jCi = —8jui7 (58)
and therefore
8jc2 = 8j (Cici) = QCiach- = —2cz-(9jui, (59)
Contracting (57) with ¢ and using (59) gives
mc? 3
c-Vinfy =¢;0;Inn+ (2kBT 2) ¢;0;InT + . Tclcj 0ju;. (60)
Hence the streaming contribution can be written as
c-Viy=fu|cojlnn+ m702 5 ¢;j0; InT + cicj Oju; (61)
MM T %kpT 2)7 kT” '

Putting it all back together. By substituting (54) and (61) into (41), the first-order distribution function
is then,

dfum
(ES R . (0)
= T(dt(o)—i-c Vaf ), (62)
dfup m c? C
=———(=V- —0; 63
mc? 3

¢ - Vafm = fu|cj0jlnn+ pT 2 ¢;0; lnT—|—k Tclcjauz , (64)

finally providing a close-form solution to f), based only on f(© = fy,.



3 Moments of f1): heat flux and pressure corrections
We now connect the Chapman-Enskog expansion

F=79 1M 402, (65)

directly to macroscopic transport by taking velocity moments of the distribution function. At zeroth
order (O = f); gives isotropic pressure and vanishing heat flux,

1
P(O = m/clc]fM d3e = pdij, qgo) = / imCQCifM dec=0, (66)
as we showed earlier. All irreversible transport therefore enters through the first-order correction f).

3.1 Relevant first-order fluxes

We define the first-order pressure tensor and heat flux as
PZ(J1 = m/cicjf(l) d3c, qz(l) E/%mc%if(l) d3c. (67)
The full stress tensor is then
P =P +eP) +0(e). (68)
Further, we define the viscous stress as the deviation from the isotropic pressure,

mij = Py — pdi; = eP) + O(2). (69)

3.2 Decomposition of f(!) by tensorial parity

The first-order correction obtained from (62) may be grouped by its velocity dependence into

FO = FSh+ o+ £ (70)
where,
o fé(lizi is odd in ¢ (typically o ¢;0;Inn and ¢;0;InT),
) félllik is isotropic in indices but even in ¢ (typically o< ¢V - u),
fshe&r is even and traceless-quadratic in ¢ (typically o ¢;c; contracted with velocity gradients).

This decomposition is useful because different moments “select” terms with different symmetries from
(62). What this amounts to is organizing different macroscopic forces by how they act to restore each
fluid element to local thermal equilibrium.

3.3 First-order heat flux from odd terms of f() and Fourier’s law of heat
conduction

From the full first-order correction (62), the terms that are odd in ¢ are those proportional to ¢;0; Inn,
¢;j0; InT', and ¢;0;p. Collecting them, the odd part of fM can be written as

2
1 mc 3 moc;
chdZi — —TfM |ﬁj8j Inn + (2]{33T 2) Cja InT — kBT ;azp . (71)
Substituting this into the definition of the heat flux gives
1 1 mc® 3 m oc; . |
qi( ) _ ,T/ imCQCi [Cjaj Inn + <2k:BT 2) c;0;InT — T ;8 plfu e (72)



By isotropy of the Maxwellian, integrals of the form [ c;c;F(c?)fu d3e reduce to

/cich(c2)fM d’c = géij AF(AP) fur dPe. (73)
Therefore,
1 1 1 me? 3
ql()——Talnn / —mct far dgc—TﬁlnTS/ <2kBT 2>c4fM d’c
1 m 1 1
Oip ==~ [ =mc*far dc. 74
SRR P 5me fur de (74)
The fourth moment of fa; in ¢ is (which can be shown by direct integration),
kpT\>
/c4fM d*c = 15n (B> ) (75)
m
SO
15 (kT
/ —mctfy PPe= = ( B ) (76)
Using p = nkpgT and p = mn, the density-gradient and pressure—gradient terms are then
1 /1 115 (kgT)? 5 (kpT)?
—70; lnng/imc4fM dBe=—70;lnn §?n( B;n ) = —Tami( Jin ) (77)
and
1 m 1 4 3 15 (kBT) 5 (kpT)? 5 (kpT)?
o S\VBE ) nT 2B
3kT /mchdc =7 0;p kT2 - 7'8m2 - + 7nd; In 5 (78)

and hence the first term of the pressure-gradient cancels exactly with the density gradient. This leaves

only the temperature gradient terms in qi(l),

(1) - ] ?(kBT) 1 / 1 ch 3 4 3
q; 'i'nﬁllnT2 - 70;1n T3 2kBT 3 ¢t fu d’c. (79)

Let us now break the final integral into two. Starting with the simplest term is the —3/2 term in the
final integral, resembling again the fourth moment of f;, which we already calculated above. Hence,

ot [ L (Z3) 3__1/143 15 (kpT)?
T(‘?llnT3/2m< 2)0 S d c.—TE)llnT2 2mc fvd’c = 1n0; In T4 e (80)
hence,
m2
® = wr 22081y /6 5 1
q; T no; R T 0; kT & fu d’e, (81)
leaving us with a final sixth moment of fj; to calculate. One can show that,
kpT\®
/cﬁfM d’c = 1057 <B> , (82)
m
and so
m? m? kT 105 (kpT)?
InT Sfar dPe=—70;InT 1 e InT :
T@HleT/ fu de T@HleBT05<m> ™ 0; -
(83)
This gives,
5 (kgT 5nk%LT 5k
qgl)——Tn(?l TS ( Cl —T*n B &'T:—Tp*fBaiT, (84)
2 m 2 m 2m
ie.,
k
gV = —kVT, K= §—Bp7. (85)
2 m

Thus the odd part of the first order Chapman-Enskog correction produces Fourier’s law of heat con-
duction, with thermal conductivity proportional to the collisional relaxation time 7.



3.4 Pressure corrections and bulk viscosity from the isotropic, even terms
of f)

The first-order pressure tensor is
PO —m / cie O de. (86)

Since c;c; is even in ¢, any odd part of fo (the terms respounsible for q(l)) integrates to zero by parity.
Thus only the even-in-c pieces of () contribute to Pi(jl). From the full first-order correction (62), the

even contributions that are isotropic in velocity space are those proportional to ¢? (rather than cicj),
and they multiply the scalar compression V - w. Denote this part by

m 02
) — foMkB—T <3V . u) , (87)

where the factor 1/3 is convenient because c?/3 is the isotropic part of the quadratic tensor cicy.
Inserting (87) into the definition of Pi(jl):
2

3kpT

Pl.(;)bulk = m/c,;cjfélll)lk dPc=-7V-u /cicjc2fM d*c. (88)

By isotropy of the Maxwellian, the tensor integral must be proportional to d;;:
1
/CiCjC2fM d3c = géij C4fM dSC. (89)

Using the fourth moment already computed in the heat-flux section,

2
/c4fM d?c =15n (kBT> , (90)
m

we obtain
/cichQfM dBe = %@j 15n <kf'f)2 =5n (f)Q dij. (91)
Substituting back into (88) gives
PO =TV ?)]’::T 5n (’“’;LTY §ij=—TV-u g nkpT b;;. (92)
Since p = nkgT, this can be written compactly as
Pz'(;)bulk =—C(V - u)dy, (= gPT- (93)

Interpretation (bulk viscosity and equation of state). Equation (93) is an isotropic (pure-
trace) correction to the pressure tensor. It therefore does not contribute to shear stresses; rather,
it modifies the relation between isotropic stress and the local compression V - uw and is naturally
interpreted as a bulk-viscosity-type term. A caution is warranted. For a monatomic ideal gas with
only elastic binary collisions, the physical bulk viscosity vanishes in the full Boltzmann theory. In the
Chapman-Enskog expansion this occurs because any isotropic O(e) correction to the pressure tensor
corresponds to a change in the local energy density and can therefore be absorbed into a redefinition
of the temperature. As a result, only the traceless (deviatoric) part of the stress tensor represents a
true first-order dissipative effect.

10



3.5 Shear viscosity from the traceless, even terms of f)

We now compute the deviatoric (shear) stress arising from the traceless, even terms in f (1), Since the
pressure tensor is even in c,

P(1 —m/clc O de, (94)

the odd part of f(!) does not contribute. Moreover, we have already isolated the isotropic, components
are proportional to V - u (the bulk/trace correction). We therefore focus only on the traceless part of
the velocity gradient, introducing the standard decomposition

1
8jui = Sij + Qij + géijV -u, (95)
with
1 1 1
Si]’ = 5(81% + @uz) — §6UV -u, Qij = 5(6]'111' — @uj), (96)

so that S;; = 0. In the Chapman-Enskog correction, the part that produces shear stress must be (i)
even in ¢ and (ii) traceless in the indices contracted with P;;. This therefore corresponds to only the
¢;icjOju; term in (54), which we can write in traceless form (cicj - %CQ(Sij) and the rate-of-strain Sj;,
giving

1
Flie = Tka T (Cz‘cj - 3025ij> Sij- (97)

(The antisymmetric part €2;; cannot contribute because it contracts to zero with the symmetric tensor
cicj.) The corresponding first-order pressure correction is

1 .
Z(jl)shear = m/czcj haar dBe = T TSkg/cicj (CkCg — 3025;%) fu de. (98)
By isotropy of the Maxwellian, the fourth moment in ¢ has the general form
/CiCjCkCng' d3c =A (5ij5k€ + 5ik5j£ + 5i£5jk) , (99)

where A is fixed by contracting indices:

/c4fM d*c = /cicicjcij dPe=154 = A v dPe (100)

15

Using the previously evaluated fj; moment in ¢

2
/c4fM d*c = 15n (kBT> ) (101)

m

we obtain A =n (k ) Substituting into (98) and using Sk = 0 yields

1
/Cicj (Ckcl - 3625ke> fu e =AGiwdje + 6iedjn) (102)
2 2
1 m m
= P = 7oA (Sid + Sii) = —2r s A (103)

Finally, since A =n (k T) and p = nkgT, we find

1
Pi(j,)shear = _2pT Sl] (104)
Thus the deviatoric stress tensor, m;;, is
mij = Pij —pbi; = =2p8i5,  p=pr, (105)

which is the Newtonian shear stress with dynamic viscosity coefficient y = p7, derived directly from
the Chapman-Enskog expansion of the Boltzmann equation with the BGK collision operator.

11
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