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1 Lecture goals

This lecture is split into two parts. The first, which pertains to understanding the relationship between
a microscopic statistical description of individual particles and a macroscopic fluid model for such a
system, and the second which describes how to calculate and get information about a magnetized fluid
model under very small perturbations away from a state of homogeneity (V, = 0) and stationarity
(0 = 0). The goals of this lecture are as follows:

1. To develop an intuition for the connection between the phase space, &>z d>v distribution function,
f, for a species of particles and the corresponding fluid theory. The principle goal is, given an f,
you can derive a fluid theory (under the standard assumptions).

2. To understand how to linearize and interpret linear modes in a fluid model, with focus on how
to solve a for a set of eigenmodes of the linear system, and to understand concepts like wave
propagation, phase velocity, and compressibility of the modes.

The philosophy of this lecture is to provide simple cases, for which the anyone may extend to the cases
(e.g., relativistic) that torment them and their research work.

2 Boltzmann equation for a monoatomic gas

In its nonrelativistic form, the Boltzmann equation, describing the phase-space, (x,v), evolution of
the distribution function, f, including external forces and collisions, reads

ai+v~vmf+F(2’t)

o Vaf =CIf], 1)

where V, and V,, denote gradients in coordinate space and velocity space, respectively, and F' is the
external force (e.g. gravity or the Lorentz force in a plasma). In the first section of these notes we
assume a neutral, single-species gas, each particle with mass m, in an inertial frame with no external
forces, F = 0, so the streaming operator reduces to 0, f +v-V f. We replace the full collision operator
by the Bhatnagar-Gross-Krook (BGK) model,

alf == (7 - 1), 2)

which assumes that collisions drive the distribution toward a local Maxwellian f(®) on a characteristic
relaxation time 7. The BGK operator preserves mass, momentum, and energy while providing the
correct tensorial structure of viscous transport. The Boltzmann equation therefore becomes

S v Vaf = —— (£ =), (3)
The local thermal equilibrium (LTE) distribution f (0) is the Maxwell-Boltzmann distribution
3/2 2
O (0. 8) = (. t) [ _my — u(, )] 4
PO 00 =net) (s ) e Mh o HEOE] ()
where
n(x,t), u(x,t), T(x,t), (5)

are the number density, bulk flow velocity, and temperature. In these lectures we will assume that f
is exactly f(©), i.e., that f has collisionally relaxed to LTE. Note that f(z,v,t) v = flz, v, t)dmv? dv
is the standard Maxwell-Boltzmann in magnitude of v. These macroscopic fluid fields are defined as
velocity moments of f,

: 3 1
nz/f o, nuz/vf o, §TL]€BTE/§m|’U_u|2f Po. (6)



It is convenient to introduce the mass density p = mn, the peculiar velocity ¢ = v — u, and kinetic
and internal energy,

1 1 1 3
ipu2 = /§m112f dw, pe = /imCQf d3v = §NkBT, (7)
for a monatomic gas. We also define the kinetic energy, pressure (stress) tensor and heat flux by
1
P = m/cicjf d®v, G = /imc%if dv. (8)

For a local Maxwellian, P;; = pd;; and ¢; = 0 with p = nkgT, which we will discuss in more detail
in the next subsection. A key property of the collision operator is the conservation of the collision
invariants ¢ € {1, v, %va},

/Mj[f] dv =0. (9)

In the BGK model this holds because f(©) is chosen to match the local density, momentum, and
energy of f, so that [(f — f(@) d® =0, [v(f — f©) d® =0, and [?(f — f©) d®v = 0, i.e, it
disappears under the actions of the moments. Let us now derive the evolution equations for some of
the low-moment quantities from above.

2.1 Zeroth-moment (mass conservation)

Integrating the Boltzmann equation over d®v gives

%/f d3v+Vm./vf d%:/C[f] d*v, (10)

| —
=0

or, using the macroscopic definitions,

0

£+V-(nu)zo, (11)
where we can multiply by the species mass to get the standard continuity equation,

0

(’75 + V- (pu) = 0. (12)

Note that [ v, O, f v = Oz, Juif d3v, because v and @ are independent phase-space coordinates.

2.2 First-moment (momentum conservation)

Multiply the kinetic equation by mwv and integrate,

gt(m/vfdgv>—i—Vm-(m/v@vfdgv)Zm/vc[f] d’v. (13)

=0

where v ® v = v;v;. Let us note that
ViV = (’LLz + ci)(uj + Cj) = UU; + UiCj + UC; + Cicf, (14)
and hence the second integral becomes
m/vivjf B = m/ (wiuj + uicj + ujc; + cicj) f d3v. (15)

The first term yields,

m/Uinf d*v = mu,u; /f d*v = puju; = pv @, (16)



which is the classic quadratic nonlinearity (where turbulence comes from). The second and third term
yield,

m/uicjfd3’v:mui/cjfdsv:mui/(vj—uj)fd?’v:mui (/vjfd?”v—uj/fd?’v) =0,
(17)

which means the first-moment of the velocity fluctuations away from the bulk flow is zero. Hence the
only remaining term is

m/C¢ij d3'U = Pij (18)

which is exactly the definition of the tensorial pressure P = P;;. Substituting this back into Equa-
tion (13)

0
aLZ‘+V-(pu®u+P)=o, (19)
or equivalently
Jou 1
. =_—-V.-P 2
5 +u-Vou pV , (20)

after using Equation (12).

2.3 Second-moment (energy conservation)

Next we multiply the kinetic equation by %va and integrate,

Q 1 2, 13 ) 1 2 3_/1 2 3
8t/2mvfdv—|—Vw /vavfdv— 5 MY Clf] d°v. (21)

=0

Decomposing v? = (u + ¢)? = wu; + 2u;c; + ¢;¢; and using [ ¢;f d3v = 0 on the u;c; terms, as we
showed previously, then

— [z Po=— (= 22
8t/2mvf v 6t(2pu tee)s (22)
is just the Eulerian derivative of the total energy. We expand the last integral in a similar fashion,
1 1 1
/iva'v fd3v = /ém (uiu; + 2uic; + cici) vy f B = §pu2u
1 . )
+ pe + / §mcicivjf o+ mui/civjf d3v. (23)
Similar to before, we must expand the tensor product for both integrals,
civj = ci(u; + ¢5) = ciuj + ¢icj. (24)
By substituting this into the first integral,
1 1
/imcicivjf B = /imci(ciuj +ocic)f d3v = peu + g, (25)
by definition, where we remind the reader that the q is the heat-flux. The last integral is
mui/civjf v = mu; /(ciuj +cici)f o = mui/cicjf v = w Py =P-u. (26)
Putting this together gives the total energy equation,
o (1 , 1,
5\ 3Pu +pe|+V- SPU +pe|lu+P-u+q|=0. (27)

We have therefore showed that the zeroth, first, and second moment describe the fluid equations that
we use regularly to describe the world around us.



2.4 Isotropic pressure and moment closure

At some point one must ask: how many moments of the distribution function are required to obtain
a useful fluid description? In principle, one may continue taking velocity moments of the Boltzmann
equation indefinitely, thereby generating an infinite hierarchy of coupled evolution equations. A prac-
tical fluid theory therefore requires a closure, truncating the infinite hierarchy.

For a plasma in which collisions rapidly relax the distribution function to a local fy;, the distribution
is completely specified by the lowest moments: the n, w, and T. In this case, higher-order moments
such as the heat-flux tensor, Q, are all zero (it is not hard to imagine that the heat-flux is zero in
LTE). An important consequence of frequent collisions rapidly relaxing f to fas is that f becomes
isotropic in ¢ = v — w. This means,

P = m/cicjf dPv =md;; | Af dv=2d;p (28)
so that the divergence of the pressure tensor reduces to
V-P=V-(dp) = Vp. (29)

This assumption fails in weakly collisional or collisionless plasmas, where f = fj;, and pressure
anisotropy and heat flux arise in the fluid model. At this stage the p itself has not yet been specified.
One could derive an evolution equation for p by taking higher moments, but in ideal MHD the system
is instead closed by prescribing an equation of state relating the p to the p. In what follows, and
especially in our linear theory, we adopt a barotropic closure

p=p(p), (30)

so that p fluctuations are directly related to p fluctuations.

3 Boltzmann equation for a non-relativistic, magnetized plasma

3.1 From Boltzmann equation to an ideal MHD fluid

A convenient starting point for magnetized fluids is kinetic theory. For a plasma (e.g. ions ¢ and
electrons e), each species has a distribution function fs(x,v,t) (mass ms, charge ¢5) that obeys the
Boltzmann equation

Ofs
ot

+’U'st+%(E+'UXB)'V'Ufs:CS[fS’]7 (31)

where V,, denotes the gradient in velocity space and Cj is the collision operator (which may couple
species). The electromagnetic fields satisfy Maxwell’s equations; in the non-relativistic, low-frequency
MHD limit we will mainly use Faraday’s law

%—Jf:foE, V.-B=0, (32)

and (later) Ampere’s law without displacement current. In ideal MHD we will eliminate E using ideal
Ohm’s law, so the evolution can be written entirely in terms of B and the bulk flow u.

3.1.1 Moments of the multi-species Boltzmann equation

We have the usual velocity moments for each species, with peculiar velocity ¢; = v — ug, e.g.,

/.fs d*v, N, = /'vfs d’v, (33)

P, = ms/cs ® ¢, fs v, Qs = ms/cS ® s @ e, fs . (34)

B
Il

as previously stated for the hydrodynamic case.



Continuity equation (zeroth moment). Integrating (31) over v gives number conservation for
each species,
ong
ot

+ V- (nsus) =0. (36)

Momentum equation (first moment). Multiplying (31) by msv and integrating over v yields

MeNg (aauts + u, - Vus> =qsns (E+us x B) =V -Py + Ry, (37)

where R; = f msv Cys d®v is the collisional momentum exchange. For a number of processes, e.g.,
ion-neutral damping,

R1 X nlng(ul — u2), R2 X ngnl('uQ — ul) = —Rl, (38)
hence, ) R, = 0 (Newton’s third law). This is a statement that collisions exchange momentum

internally but do not create or destroy total momentum (which is not always true).

Single-fluid variables. We can define the total mass density, bulk velocity, and current by summing
over the total number of species in the underlying plasma,

1
p= Z MmN, u= ; Z MsNsWs, J = Z GsNsUs, (39)
S S S

and the total pressure tensor P = 3 P,. Summing (37) over species (and using > R, = 0) gives the
single-fluid momentum equation

p(gl:+u~Vu>peE+JxBV‘P, (40)

where p. = ) gsns is the charge density. In the MHD regime the plasma is quasi-neutral, p. = 0, so
that

p(éz;;+u~Vu>—JxB—V~P. (41)

One can perform the same sum over s to the continuity equation, which I state in §3.2.

Induction equation (Maxwell + Ohm). Finally we turn to the evolution of the magnetic field.
Faraday’s law is

%gz—VxE, V.-B=0. (42)

To close the system, we require a relation between E, B, and the fluid velocity. This is provided by
Ohm’s law, which follows from the electron momentum equation. In the simplest (non-relativistic)
setting, neglecting electron inertia, electron pressure gradients, and resistivity, the electric field in the
fluid frame, E’ vanishes,

E' =E+uxB=0. (43)

This is the ideal Ohm’s law and expresses perfect conductivity (flux freezing). Substituting (43) into
Faraday’s law gives the ideal induction equation:

0B

E:—VXE:—VX(—uxB):Vx(uxB). (44)
Taking the divergence of (44) yields
%(V~B):V-[Vx(u><B)]:0, (45)

so if V - B = 0 initially it remains so.



3.2 Ideal MHD equations.
Putting this altogether, the ideal MHD equations are

dp B
En + V- (pu) =0, (46)
p(aa’l:—&—u-Vu):—Vp—&—JxB, (47)
0B
E—VX(UXB), (48)
V.-B =0, (49)

with J given by (50). The system is closed by an equation of state (e.g., barotropic p = p(p), adiabatic
pp~ 7 = const, etc.).

3.3 The repercussions and assumptions of ideal MHD

In obtaining ideal MHD, our models adopts the following:

1. Fast (normally collisional) relaxation to LTE: collisions rapidly drive each species toward
a local thermal equilibrium (LTE) that relaxes f towards the Maxwell-Boltzmann distribution,
far (to understand why, look into Boltzmann’s H-theorem), enabling us to generate evolution
equations in the way we have throughout these notes (in my Chapman-Enskog notes this is made

explicit by expanding fs = fom + effY 4+ ... and deriving transport equations that account a

small perturbation away from fj;, € 5(1). Note that this means that the plasma we consider has
to be collisional enough i.e., Kn = Ang/L < 1, for a fluid theory such as ideal MHD to be
justified. This is not the case in most high-energy plasmas around compact objects.

2. Isotropic scalar pressure: As discussed previously, for a Maxwell-Boltzmann distribution
function, P = pl, so that —V - P = —Vp. Weakly collisional plasmas, perturbed away from
LTE, can have pressure anisotropy, which leads to additional fluid operators (Braginskii) and
evolution equations (CGL). For collisionless plasmas, all bets are off.

3. No heat flux: One can show explicitly that for an Maxwell-Boltzmann distribution, the heat-
flux tensor, Qg is exactly zero (there exists no third-order moments because f is perfectly sym-
metric). Hence there is no flux of heat between fluid elements in the ideal approximation (of
course... everything is LTE).

4. Quasi-neutrality: We assumed that p. = 0, which allowed us to eliminate E from the mo-
mentum equation. This is not Lorentz invariant, and so for relativistic plasmas the nature of
V - E = p. is frame-dependent.

5. No displacement current: We neglect displacement current so that Ampere’s law reduces to

E
V x B = pugd <instead of V x B = pgJ —|—50,u088t> . (50)

Why can we do this? For characteristic length scales L, E ~ UB (ideal Ohm’s law), timescales
T~LJ/U,J~ B/(uL), 1/c* ~ (npgo) then

|€0,LL() 8tE\ (1/62)U2B/L Ui (51)
‘u()Jl B/L c2

where U is the fastest signal speed in the plasma (the fast magnetosonic speed, which we derive
later). This speed is U < ¢ in the non-relativistic limit, making oo 0¢ F negligible in Ampere’s
law, and simplifying our Lorentz force. This approximation removes vacuum electromagnetic
waves (w = ck) from the model, leaving only plasma-supported modes.



6. Infinite conductivity (ideal Ohm): we have neglected so many terms in the electron mo-
mentum equation that the electric field in the fluid frame must vanish,

E+uxB=0, (52)

i.e., ideal Ohm’s law. This corresponds to perfect “flux freezing” (the mass density and magnetic
fields are frozen together in the plasma — fields lines do not slip through the plasma).

7. Single-fluid closure: We assume that species in the underlying plasma are sufficiently coupled
to be described by a single bulk velocity.

4 Linearization

4.1 Small perturbations about a homogeneous equilibrium

We linearize ideal MHD about a homogeneous, stationary background with constant density, pressure,
and magnetic field,

p(x,t) = po + ep1(x, 1), (53)
p(x,t) = po + ep1(x, t), (54)
u(x,t) = euq(x, t), (55)
B(x,t) = By + eB(x, 1), (56)

where € < 1 is a small parameter, meaning, e.g., ep; < pg, etc. The background state satisfies
P0, Po, Bo = const., ug = 0, V By =0. (57)

We assume a barotropic/adiabatic equation of state closure so that to linear order in €
p1 = Cz P1, Cs
i.e., the linear order closure for the equation of state is an isothermal one, since T o /cs.

4.2 Linearization of the ideal MHD equations

We substitute the perturbation expansions into (46)—(49) and retain only terms up to O(e). Through-
out, we use that the background is uniform and stationary,

0 0 0

&PO = apo = &BO =0, (59)

and
Vpo = Vp() =V ® B() =0. (60)

Let us now linearize the MHD equations, one-by-one.

4.2.1 Linearized Continuity Equation

0= % (po +€p1) + V - [(po + €p1) (eur)] (61)
= PV (o) + O(), (62)

Dividing by € and discarding higher-order terms gives

)
§+pov-u1=0. (63)



4.2.2 Linearized Induction Equation

0
a (Bo + EBl) =V x [(Eul) X (BO + EBl)] (64)
eagl =€V x (u; x By) + O(e?), (65)
SO
aBl =V X (ul X BO) (66)
ot
Taking the divergence gives
%(VBl):V(VX(’UqXBQ)):O, (67)

so if V - By = 0 initially, it remains so,

which is very sensible.

4.2.3 Linearized Momentum Equation

The inertial term becomes

ou ou
(229 < (2 .
811,1 2
€00 ot + (6 )? ( )
so nonlinear advection is higher order. The pressure gradient is —Vp = —eVp;. For the Lorentz force,
(VXB) XB:(VX (B0+€Bl)) X (B0+€Bl) (71)
= ¢(V x By) x By + O(é%), (72)
since V x By = 0. Collecting O(e) terms gives

0 1
po%:—Vpl—i——(VxBl) x Bo. (73)

t Ho

It is often useful to rewrite the Lorentz force using vector identities. For constant By and V - By = 0,

(V x By) x By = (By-V)B; — V(B - By), (74)
so that
ou By -B 1
00 g2 -V (pl + 0 1) + 7(B0 : V)Bl (75)
ot Ho Ho

The first term is the gradient of the total (thermal + magnetic) pressure perturbation, and the second
term is magnetic tension along the background field.

5 Plane-wave solutions

We now seek normal-mode solutions of the linearized MHD equations. We therefore assume solutions
of the form

pr(a,t) = ettt (76)
pi(x,t) = pelle—wt) (77)
uy (e, 1) = aetFe—wt), (78)
Bi(z,t) = Bellk@—wt), (79)



where k is the wavevector, w is the (complex) frequency, and hatted quantities denote constant complex
amplitudes. Under this ansatz, temporal and spatial derivatives become

5 " W V — ik, (80)

so the linearized system of partial differential equations reduces to a system of algebraic equations.

5.1 Constructing the linear system.

The goal is now to construct a linear system for the wave momentum ampltidues. Hence we are
going to focus on building each term from the linear momentum equation. The linearized continuity
equation, Eq. (63), becomes

—wp+pok-a=0. (81)
The induction equation, Eq. (66), becomes
—wB =k x (4 x By). (82)

The momentum equation, Eq. (73), becomes
. L1 -
—Wwpou = 7,€p+ ;(k X B) X B(). (83)
0

Finally, the solenoidal constraint and the equation of state give

k-B=0, p=cp. (84)

Equations (81)—(84) form a closed algebraic system for the unknown amplitudes (p,p, @, B), some of
which we can derive immediately, which I shall do below.

5.1.1 Constructing the eigenvalue problem for u

After eliminating p using (88) and B using (90), the momentum equation can be written as the
eigenvalue problem

M(k) - 4 = w?a, (85)

where M is the 3 x 3 matrix of amplitudes for .

5.1.2 Rearrange u.

To construct this, we start with the Fourier—space momentum equation,

1 .
—wpo = —kp + ;(k X B) x By. (86)
0
and multiply by —w to give,
w2pots = whp — Mi(k x B) x By. (87)
0
5.1.3 Rearrange p.
From (81) and (84) we obtain
poca
p=chp=—"k- . (88)
w

10



5.1.4 Rearrange B.

Using the vector identity
k x (4 x By) = (k- Bp)t — (k- u)By, (89)

the induction equation (82) yields

B = (k- By (k- @)By. (90)

5.1.5 Rebuilding @ in an appropriate form.

From our combined continuity and EOS we have Equation 88, hence the pressure term in Equation 87
becomes,

wkp = poc; k(k - @) = pocs kj(kitis) = pocs (kjki)ius = poc; (k @ k) -, (91)
which has the form of a tensor k;k; contracted onto a velocity ;, as required. Now we must construct
the linearised Lorentz force term, noting that

w

Lk xB) < By = - [B(k- Bo) — k(B Bo)], (92)

which means we need to construct both B(k - By) and k(B - By). From the induction equation we
have Equation 90, hence the first term is simply,

B(k- By) = %{(kz . Bo)%i — (k- Bo)(k - ﬁ)Bo}, (93)
and the second term is

B-B, = 5[(1« -Bo)(@- By) — (k- @)(Bo - BO)}. (94)
hence,

k(B - By) = %{(k - By)(4- Bo)k — (k - ) B2 k] (95)

Putting them together gives,
A 1
i(kz X B) x By = —

Ho [0 [(k - Bo)*@ — (k- Bo)(k - @) By — (k- Bo)(@ - Bo)k + (k - @) Bj k} (96)

Now, substituting this back into the momentum equation, and with some small rearrangements, we
get,

oot = po (k@ k) - i — — [(k - Bo)%i — (k- @)(k - Bo)Bo — (k- Bo)(@- Bo)k + B2(k - @) k]

Ho
(97)
Next, we define v3 = B3 /(popo), by = By/By, and kj =k - 507 which gives
k- By)? -
kBl _ 2 (k- oy = 122, (98)
Hopo

(k- By)By 9, %
—_— = k b 5 99
100 AT (99)

k- By)(u- B -
k- Bo)(@-Bo) _ a1 (b ). (100)

PoHO

11



Hence, by dividing the momentum equation by py, we may write
2. _ (2 2 - 272 2 7 . s

and by undotting u,

M(k)
Wi = [(+ o) ko k — Ak - vik (60 Dk+ke 60)} 4. (102)
or in index notation,
Mij(kl) = Uzkﬁ 62’]’ + (Ci + ’0124) k’ikj — UzkH (k‘ii)oj + i)oik’j) , (103)
which is real and symmetric.
6 Ideal MHD Eigenmodes
We now solve the eigenvalue problem
M(k) - @ = w?a, (104)

derived in the previous section, and interpret the resulting eigenvalues and eigenvectors as physical
wave modes of the magnetized fluid. We choose coordinates such that the background magnetic field
defines the z-axis,

By = Byz, (105)
and take the wavevector to lie in the z-z plane,
k= (kLv Oa k”)? (106)

so that k) =k - by and k2 = k? + kﬁ In this basis, the eigenvalue problem becomes

(Cg + Ui)ki + U?qkﬁ 0 CE/@_I{ZH
M(k) = 0 viki 0 ) (107)
Cglﬂ_k’H 0 C§k2

This system immediately decouples into a transverse mode (y-direction) and two coupled compressive
modes in the (z, z) plane.

6.1 Alfvén mode

The y-component of the eigenvalue problem satisfies
Wiy = vikiiy, (108)

giving the dispersion relation

W = :IZUA/C||7 (109)

i.e. the waves propagate only along the direction of the background magnetic field, with phase speed
equal to the Alfvén speed vy. The corresponding eigenvector is

@ = iy7. (110)
Because k = (k1,0,k)) and w = (0,4,,0),

k-u=0 4 By=0. (111)

12



Compressibility. From the linearized continuity equation,

=2k a, (112)
w

we immediately see that p = 0 for the Alfvén mode, and hence p = 0 via the EOS. The Alfvén wave
is therefore incompressible and purely transverse.

Magnetic field fluctuations The associated magnetic-field fluctuations follow directly from Eq. (90),

N 1 k-B
B=——|(k-Byi— (k-0)By| = ———a. (113)
w w
Using k - By = k) By and w = twvak, this becomes
N By . .
B =524 = F/uopo . (114)
VA

Thus the velocity and magnetic perturbations are exactly parallel (or anti-parallel), and both are
perpendicular to k and By. In velocity units,

B X
T = (115)

which is the standard Elséisser relation for Alfvén waves (not covered in this lecture, but this form is a
building block for Alfvénic turbulence theory, where wavepackets, 2* = u + B/ /figpo, are shown to
be exact nonlinear solutions to the incompressible MHD equations).

Restoring force. Finally, writing the linearized momentum equation in pressure-tension form,

BO-Bl) 1

+—(Bo - V)Bu, (116)

poOiuy = —V<p1 +
Ho

Ho
we note that both p; = 0 and By - By = 0 for the Alfvén mode, so the total pressure gradient vanishes.

The only remaining restoring force is magnetic tension.

6.2 Fast and slow magnetosonic modes.

The remaining two eigenmodes correspond to velocity perturbations lying in the xz plane spanned by
k and Bj. These are obtained by solving the reduced 2 x 2 eigenvalue problem

(3 +0R)KT + Rk ik (a.) o (i
< ki k Czk’ﬁ a )= a ) (117)

The characteristic equation is

w — W (2 +0Y) + czv%k%ﬁ =0, (118)
with solutions
k2
w? = 5 {(cz +v3) £ \/(CE +v%4)? — 4c2v? cos? 9}7 (119)
where
k kB 0
cosf = ?H, since k= %{fs’. (120)

The upper (+) branch corresponds to the fast magnetosonic mode, while the lower (—) branch corre-
sponds to the slow magnetosonic mode.
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Compressibility. For both magnetosonic modes, the velocity eigenvector satisfies

k-u+#0. (121)
From the linearized continuity equation,
p=Lk a, (122)
w
it follows immediately that
p#0, P=clp#0. (123)

Thus both magnetosonic modes are compressible and involve coupled fluctuations of velocity, density,
pressure, and magnetic field.

Magnetic-field fluctuations. The magnetic perturbations follow from the induction equation,
A 1
B=-=|(k-Bo)i— (k-@)Bo|. (124)
w

Unlike the Alfvén mode, both terms contribute for magnetosonic waves. The term proportional to
(k - Bo)u represents magnetic tension due to bending of field lines, the term proportional to (k- 4)Bg
represents magnetic-pressure fluctuations associated with compression of the field. As a result, B lies
in the (k, By) plane (zz-plane in our lecture) and is neither parallel nor perpendicular to @, in general.

Restoring forces. Writing the linearized momentum equation in pressure—tension form,

BO'Bl)

1
+—(Bo - V)Bu, (125)
Ho

poOiuy = —V(p1 +
Mo

we see that magnetosonic waves are restored by a combination of thermal pressure gradients (Vp1),
magnetic pressure gradients (V(By - By)), magnetic tension along the background field. The relative
importance of these restoring forces depends on the propagation angle 6 and on the ratio ¢s/v4.

6.2.1 Limiting cases for propagation angle.

Let us finally consider a few different limiting cases for the magnetosonic modes to gather some intuition
about their propagation behavior.

Parallel propagation (0 = 0):

Wt = K max(c2,03), (126)

2 2

Wiow = k2 min(c3, 11124). (127)

The fast mode reduces to the faster of the acoustic or Alfvénic response, while the slow mode propagates
at the slower characteristic speed.

Perpendicular propagation (6 = 7/2):

wf2ast = k2(6§ + ’Ui), (128)
Wiy = 0. (129)

In this case the slow mode becomes non-propagating, while the fast mode propagates isotropically in
the plane perpendicular to By, with effective sound speed /c2 + v%. Thus the fast magnetosonic mode
is a compressive modes that propagates in all angles with respect to the background field w? o k2,
whereas the slow mode is field-guided § = 7/2 = w = 0 = k, i.e., the slow mode no longer defines
a planar wave at 6 = w/2. We can see what this mode does by substituting its properties back in our
linear momentum,

B, - B 1
podiur = —V(m + 01) + —(By-V)By, (130)
Ho Ho
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where w =0 = Gyu; =0 and k| =0 = (By - V)B; = 0, hence

By B
Vp, = -v—2 1L (131)
Ho

is a structure in pressure-balance. Hence the § = 7/2 slow mode describes a non-propagating structure
in pressure equilibrium (see, e.g., pressure-balanced structures (PBSs) observed in the solar wind).

6.2.2 High- and low-£ limits.

Additional insight is obtained by considering the relative importance of thermal and magnetic pressure,
characterized by the plasma beta 3 ~ c¢Z/v%.

Low-{ plasma (v4 > c;):

waast = Uik27 (132)

2 272

wleW ~ CSkH . (133)
In this regime the fast magnetosonic mode is predominantly magnetic, propagating at nearly the
Alfvén speed in all angles, while the slow mode behaves as a field-guided acoustic wave and remains

non-propagating for perpendicular propagation.

High-3 plasma (c; > vy):
waast = Cik2, (134)
Wiow = VK. (135)

In this limit the fast mode reduces to an ordinary sound wave that is only weakly influenced by the
magnetic field, while the slow mode becomes a weak, magnetically dominated, field-guided compres-
sive wave. Thus the fast mode corresponds to the dominant restoring force in the plasma (thermal
or magnetic), while the slow mode represents the subdominant compressive response constrained to
propagate along the magnetic field.
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